Fault Diagnosing Of An Induction Motor Based On Signal Fusion Using One-Dimensional Convolutional Neural Network

Sakineh Pashaee, A. Ramezani, Mina Ekresh, Saeid Jorkesh
{"title":"Fault Diagnosing Of An Induction Motor Based On Signal Fusion Using One-Dimensional Convolutional Neural Network","authors":"Sakineh Pashaee, A. Ramezani, Mina Ekresh, Saeid Jorkesh","doi":"10.1109/ICSPIS54653.2021.9729338","DOIUrl":null,"url":null,"abstract":"The detection and classification of induction motor faults using a one-dimensional convolutional neural network is discussed in this paper. A one-dimensional deep neural network is learned utilizing three-phase current and voltage signals from an induction motor system. The results of experiments show that the one-dimensional deep convolutional neural network method effectively diagnoses the induction motor conditions (Bearing fault, Rotor bar broken, short circuit stator winding 8% and 12.5 %).","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The detection and classification of induction motor faults using a one-dimensional convolutional neural network is discussed in this paper. A one-dimensional deep neural network is learned utilizing three-phase current and voltage signals from an induction motor system. The results of experiments show that the one-dimensional deep convolutional neural network method effectively diagnoses the induction motor conditions (Bearing fault, Rotor bar broken, short circuit stator winding 8% and 12.5 %).
基于一维卷积神经网络信号融合的异步电动机故障诊断
讨论了基于一维卷积神经网络的异步电动机故障检测与分类问题。利用感应电机系统的三相电流和电压信号学习一维深度神经网络。实验结果表明,一维深度卷积神经网络方法能有效地诊断感应电机故障(轴承故障、转子断条、定子绕组短路占8%和12.5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信