Learning Human Motion Models

Bulent Tastan
{"title":"Learning Human Motion Models","authors":"Bulent Tastan","doi":"10.1609/aiide.v8i6.12484","DOIUrl":null,"url":null,"abstract":"\n \n My research is focused on using human navigation data ingames and simulation to learn motion models from trajectorydata. These motion models can be used to: 1) track the opponent’smovement during periods of network occlusion; 2)learn combat tactics by demonstration; 3) guide the planningprocess when the goal is to intercept the opponent. A trainingset of example motion trajectories is used to learn twotypes of parameterized models: 1) a second order dynamicalsteering model or 2) the reward vector for a Markov DecisionProcess. Candidate paths from the model serve as themotion model in a set of particle filters for predicting the opponent’slocation at different time horizons. Incorporating theproposed motion models into game bots allows them to customizestheir tactics for specific human players and functionas more capable teammates and adversaries.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v8i6.12484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

My research is focused on using human navigation data ingames and simulation to learn motion models from trajectorydata. These motion models can be used to: 1) track the opponent’smovement during periods of network occlusion; 2)learn combat tactics by demonstration; 3) guide the planningprocess when the goal is to intercept the opponent. A trainingset of example motion trajectories is used to learn twotypes of parameterized models: 1) a second order dynamicalsteering model or 2) the reward vector for a Markov DecisionProcess. Candidate paths from the model serve as themotion model in a set of particle filters for predicting the opponent’slocation at different time horizons. Incorporating theproposed motion models into game bots allows them to customizestheir tactics for specific human players and functionas more capable teammates and adversaries.
学习人体运动模型
我的研究重点是在游戏和仿真中使用人类导航数据来从轨迹数据中学习运动模型。这些运动模型可以用于:1)在网络遮挡期间跟踪对手的运动;2)通过示范学习作战战术;3)当目标是拦截对手时,指导计划过程。一个训练集的例子运动轨迹被用来学习两种类型的参数化模型:1)一个二阶动态转向模型或2)一个马尔可夫决策过程的奖励向量。该模型中的候选路径作为一组粒子滤波器的运动模型,用于预测对手在不同时间范围内的位置。将提议的运动模型整合到游戏机器人中,使它们能够为特定的人类玩家定制策略,并发挥更有能力的队友和对手的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信