Generalized PolyCube Trivariate Splines

Bo Li, Xin Li, Kexiang Wang, Hong Qin
{"title":"Generalized PolyCube Trivariate Splines","authors":"Bo Li, Xin Li, Kexiang Wang, Hong Qin","doi":"10.1109/SMI.2010.40","DOIUrl":null,"url":null,"abstract":"This paper develops a new trivariate hierarchical spline scheme for volumetric data representation. Unlike conventional spline formulations and techniques, our new framework is built upon a novel parametric domain called Generalized PolyCube (GPC), comprising a set of regular cubes being glued together. Compared with the conventional PolyCube (PC) that could serve as a ``one-piece'' $3$-manifold domain, GPC has more powerful and flexible representation ability. We develop an effective framework that parameterizes a solid model onto a topologically equivalent GPC domain, and design a hierarchical fitting scheme based on trivariate T-splines. The entire data-spline-conversion modeling framework provides high-accuracy data fitting and greatly reduce the number of superfluous control points. It is a powerful toolkit with broader application appeal in shape modeling, engineering analysis, and reverse engineering.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

This paper develops a new trivariate hierarchical spline scheme for volumetric data representation. Unlike conventional spline formulations and techniques, our new framework is built upon a novel parametric domain called Generalized PolyCube (GPC), comprising a set of regular cubes being glued together. Compared with the conventional PolyCube (PC) that could serve as a ``one-piece'' $3$-manifold domain, GPC has more powerful and flexible representation ability. We develop an effective framework that parameterizes a solid model onto a topologically equivalent GPC domain, and design a hierarchical fitting scheme based on trivariate T-splines. The entire data-spline-conversion modeling framework provides high-accuracy data fitting and greatly reduce the number of superfluous control points. It is a powerful toolkit with broader application appeal in shape modeling, engineering analysis, and reverse engineering.
广义聚立方三角样条
本文提出了一种新的三变量分层样条格式来表示体积数据。与传统的样条公式和技术不同,我们的新框架建立在一个名为广义聚立方(GPC)的新型参数域上,由一组粘合在一起的规则立方体组成。与传统的可作为“一体式”3元流形域的PolyCube (PC)相比,GPC具有更强大、更灵活的表示能力。我们开发了一个有效的框架,将实体模型参数化到拓扑等效的GPC域,并设计了一个基于三变量t样条的分层拟合方案。整个数据样条转换建模框架提供了高精度的数据拟合,并大大减少了多余控制点的数量。它是一个强大的工具包,在形状建模、工程分析和逆向工程方面具有更广泛的应用吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信