On the Smoothing of Deep Networks

Vincent Roulet, Zaïd Harchaoui
{"title":"On the Smoothing of Deep Networks","authors":"Vincent Roulet, Zaïd Harchaoui","doi":"10.1109/CISS50987.2021.9400285","DOIUrl":null,"url":null,"abstract":"Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.
关于深度网络的平滑
许多流行的深度神经网络实现的输入-输出映射对于网络参数来说是非光滑的。这种不平滑性可能增加了从理论上分析深度学习的难度。最近提出了一些复杂的方法来解决这一具体困难。在本文中,我们将探索一种简单的方法,即平滑输入-输出映射。我们展示了如何在可微规划框架内自动执行平滑。然后可以自动控制平滑对收敛行为的影响。我们用多层感知器的数值例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信