{"title":"Adaptive learning with covariate shift-detection for non-stationary environments","authors":"Haider Raza, G. Prasad, Yuhua Li","doi":"10.1109/UKCI.2014.6930161","DOIUrl":null,"url":null,"abstract":"Learning with dataset shift is a major challenge in non-stationary environments wherein the input data distribution may shift over time. Detecting the dataset shift point in the time-series data, where the distribution of time-series shifts its properties, is of utmost interest. Dataset shift exists in a broad range of real-world systems. In such systems, there is a need for continuous monitoring of the process behavior and tracking the state of the shift so as to decide about initiating adaptation in a timely manner. This paper presents an adaptive learning algorithm with dataset shift-detection using an exponential weighted moving average (EWMA) model based test in a non-stationary environment. The proposed method initiates the adaptation by reconfiguring the knowledge-base of the classifier. This algorithm is suitable for real-time learning in non-stationary environments. Its performance is evaluated through experiments using synthetic datasets. Results show that it reacts well to different covariate shifts.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Learning with dataset shift is a major challenge in non-stationary environments wherein the input data distribution may shift over time. Detecting the dataset shift point in the time-series data, where the distribution of time-series shifts its properties, is of utmost interest. Dataset shift exists in a broad range of real-world systems. In such systems, there is a need for continuous monitoring of the process behavior and tracking the state of the shift so as to decide about initiating adaptation in a timely manner. This paper presents an adaptive learning algorithm with dataset shift-detection using an exponential weighted moving average (EWMA) model based test in a non-stationary environment. The proposed method initiates the adaptation by reconfiguring the knowledge-base of the classifier. This algorithm is suitable for real-time learning in non-stationary environments. Its performance is evaluated through experiments using synthetic datasets. Results show that it reacts well to different covariate shifts.