Exploring the feasibility of heterogeneous computing of complex networks for big data analysis

A. Garcia-Robledo, A. Díaz-Pérez, G. Morales-Luna
{"title":"Exploring the feasibility of heterogeneous computing of complex networks for big data analysis","authors":"A. Garcia-Robledo, A. Díaz-Pérez, G. Morales-Luna","doi":"10.1109/CEWIT.2015.7338160","DOIUrl":null,"url":null,"abstract":"We present our experience with exploring the configuration space for accelerating BFS's on large complex networks in the context of a heterogeneous GPU + CPU HPC platform. We study the feasibility of the heterogeneous computing approach by systematically studying different graph partitioning strategies while processing synthetic and real-world complex networks. To achieve this, we exploit the coreness of complex networks for load partitioning.","PeriodicalId":153787,"journal":{"name":"2015 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEWIT.2015.7338160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present our experience with exploring the configuration space for accelerating BFS's on large complex networks in the context of a heterogeneous GPU + CPU HPC platform. We study the feasibility of the heterogeneous computing approach by systematically studying different graph partitioning strategies while processing synthetic and real-world complex networks. To achieve this, we exploit the coreness of complex networks for load partitioning.
探索复杂网络异构计算用于大数据分析的可行性
我们介绍了在异构GPU + CPU HPC平台的背景下,探索在大型复杂网络上加速BFS的配置空间的经验。我们通过系统地研究不同的图划分策略来研究异构计算方法在处理合成网络和现实世界复杂网络时的可行性。为了实现这一点,我们利用复杂网络的核心来进行负载划分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信