Sentiment Analysis of Meeting Room

Mert İleri, M. Turan
{"title":"Sentiment Analysis of Meeting Room","authors":"Mert İleri, M. Turan","doi":"10.1109/HORA52670.2021.9461354","DOIUrl":null,"url":null,"abstract":"In the last decade, enormous data are being shared throughout the world. In many of today’s big data world, the companies are trying to use some sentiment or emotion analysis techniques to analyze their customer moods and improve their efficiencies according to sentiments. As a different application we focused on the sentiment analysis of closed places in this research. It requires low noise environments obviously. Otherwise, system may be affected by distortion, and it may be contradiction for multiple sentiments. In this regard, an artificial neural network using meaningful voice features are proposed. Ryerson Audio Visual Database of Emotional Speech and Song (RAVDESS) dataset was used in this research. Normalization was applied to data. The artificial neural network was fed by training data and a classifier model was created. Estimation was made using the test data part and it was seen that accuracy of model is about 85%.","PeriodicalId":270469,"journal":{"name":"2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA52670.2021.9461354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the last decade, enormous data are being shared throughout the world. In many of today’s big data world, the companies are trying to use some sentiment or emotion analysis techniques to analyze their customer moods and improve their efficiencies according to sentiments. As a different application we focused on the sentiment analysis of closed places in this research. It requires low noise environments obviously. Otherwise, system may be affected by distortion, and it may be contradiction for multiple sentiments. In this regard, an artificial neural network using meaningful voice features are proposed. Ryerson Audio Visual Database of Emotional Speech and Song (RAVDESS) dataset was used in this research. Normalization was applied to data. The artificial neural network was fed by training data and a classifier model was created. Estimation was made using the test data part and it was seen that accuracy of model is about 85%.
会议室情感分析
在过去的十年里,大量的数据在世界各地被共享。在当今的大数据世界中,许多公司都在尝试使用一些情绪或情绪分析技术来分析客户的情绪,并根据情绪来提高效率。作为一个不同的应用,我们在这项研究中专注于对封闭场所的情感分析。显然,它需要低噪声环境。否则,系统可能会受到扭曲的影响,并可能成为多种情绪的矛盾。在这方面,提出了一种利用有意义的语音特征的人工神经网络。本研究使用Ryerson情绪言语与歌曲视听数据库(RAVDESS)数据集。将数据归一化。利用训练数据对人工神经网络进行输入,建立分类器模型。利用测试数据部分进行估计,模型的准确率约为85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信