Deep Reinforcement Learning Based Resource Allocation for Intelligent Reflecting Surface Assisted Dynamic Spectrum Sharing

Jianxin Guo, Zhe Wang, Jun Li, J. Zhang
{"title":"Deep Reinforcement Learning Based Resource Allocation for Intelligent Reflecting Surface Assisted Dynamic Spectrum Sharing","authors":"Jianxin Guo, Zhe Wang, Jun Li, J. Zhang","doi":"10.1109/WCSP55476.2022.10039119","DOIUrl":null,"url":null,"abstract":"For cognitive radio (CR) systems, it is challenging to achieve high data rate for secondary user (SU) while avoiding the cross-link interference to primary user (PU). In this paper, we propose an intelligent reflecting surface (IRS) aided dynamic spectrum sharing scheme, where an IRS assisted SU link dynamically shares the spectrum opportunities with a PU link based on the eavesdropped automatic repeat request (ARQ) feedback from the PU. We model the dynamic spectrum sharing problem as a Markov decision process (MDP), where we jointly optimize the SU transmit power and IRS reflect beamforming to maximize the cumulative expected achievable rate of the SU link subject to the outage constraint of the PU link. We propose a deep reinforcement learning (DRL) algorithm to achieve the optimal spectrum sharing policy. Experimental results show that the proposed proximal policy optimization (PPO) algorithm outperforms the traditional policy gradient (PG) and deep deterministic policy gradient (DDPG) algorithms by 100% and 46% in terms of spectrum utilization efficiency, respectively.","PeriodicalId":199421,"journal":{"name":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP55476.2022.10039119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For cognitive radio (CR) systems, it is challenging to achieve high data rate for secondary user (SU) while avoiding the cross-link interference to primary user (PU). In this paper, we propose an intelligent reflecting surface (IRS) aided dynamic spectrum sharing scheme, where an IRS assisted SU link dynamically shares the spectrum opportunities with a PU link based on the eavesdropped automatic repeat request (ARQ) feedback from the PU. We model the dynamic spectrum sharing problem as a Markov decision process (MDP), where we jointly optimize the SU transmit power and IRS reflect beamforming to maximize the cumulative expected achievable rate of the SU link subject to the outage constraint of the PU link. We propose a deep reinforcement learning (DRL) algorithm to achieve the optimal spectrum sharing policy. Experimental results show that the proposed proximal policy optimization (PPO) algorithm outperforms the traditional policy gradient (PG) and deep deterministic policy gradient (DDPG) algorithms by 100% and 46% in terms of spectrum utilization efficiency, respectively.
基于深度强化学习的智能反射面资源分配辅助动态频谱共享
对于认知无线电(CR)系统来说,如何在保证辅助用户(SU)的高数据速率的同时避免对主用户(PU)的交叉链路干扰是一个挑战。在本文中,我们提出了一种智能反射面(IRS)辅助的动态频谱共享方案,其中IRS辅助的SU链路基于来自PU的窃听自动重复请求(ARQ)反馈动态地与PU链路共享频谱机会。我们将动态频谱共享问题建模为马尔可夫决策过程(MDP),在此过程中,我们共同优化SU发射功率和IRS反射波束形成,以最大限度地提高SU链路在PU链路中断约束下的累积预期可实现速率。我们提出了一种深度强化学习(DRL)算法来实现最优频谱共享策略。实验结果表明,所提出的近端策略优化(PPO)算法在频谱利用效率方面分别比传统的策略梯度(PG)和深度确定性策略梯度(DDPG)算法提高100%和46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信