NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization

Caiyong Wang, Yunlong Wang, Kunbo Zhang, Jawad Muhammad, T. Lu, Qi Zhang, Q. Tian, Zhaofeng He, Zhenan Sun, Yiwen Zhang, Tian Liu, Wei Yang, Dongliang Wu, Yingfeng Liu, Ruiye Zhou, Huihai Wu, Hao Zhang, Junbao Wang, Jiayi Wang, Wantong Xiong, Xueyu Shi, Shaogeng Zeng, Peihua Li, Haodong Sun, Jing Wang, Jiale Zhang, Qi Wang, Huijie Wu, Xinhui Zhang, Haiqing Li, Yu Chen, Liang Chen, Menghan Zhang, Ye Sun, Zhiyong Zhou, F. Boutros, N. Damer, Arjan Kuijper, Juan E. Tapia, A. Valenzuela, C. Busch, G. Gupta, K. Raja, Xi Wu, Xiaojie Li, Jingfu Yang, Hongyan Jing, Xin Wang, B. Kong, Youbing Yin, Qi Song, Siwei Lyu, Shu Hu, L. Premk, Matej Vitek, Vitomir Štruc, P. Peer, J. Khiarak, F. Jaryani, Samaneh Salehi Nasab, S. N. Moafinejad, Y. Amini, M. Noshad
{"title":"NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization","authors":"Caiyong Wang, Yunlong Wang, Kunbo Zhang, Jawad Muhammad, T. Lu, Qi Zhang, Q. Tian, Zhaofeng He, Zhenan Sun, Yiwen Zhang, Tian Liu, Wei Yang, Dongliang Wu, Yingfeng Liu, Ruiye Zhou, Huihai Wu, Hao Zhang, Junbao Wang, Jiayi Wang, Wantong Xiong, Xueyu Shi, Shaogeng Zeng, Peihua Li, Haodong Sun, Jing Wang, Jiale Zhang, Qi Wang, Huijie Wu, Xinhui Zhang, Haiqing Li, Yu Chen, Liang Chen, Menghan Zhang, Ye Sun, Zhiyong Zhou, F. Boutros, N. Damer, Arjan Kuijper, Juan E. Tapia, A. Valenzuela, C. Busch, G. Gupta, K. Raja, Xi Wu, Xiaojie Li, Jingfu Yang, Hongyan Jing, Xin Wang, B. Kong, Youbing Yin, Qi Song, Siwei Lyu, Shu Hu, L. Premk, Matej Vitek, Vitomir Štruc, P. Peer, J. Khiarak, F. Jaryani, Samaneh Salehi Nasab, S. N. Moafinejad, Y. Amini, M. Noshad","doi":"10.1109/IJCB52358.2021.9484336","DOIUrl":null,"url":null,"abstract":"For iris recognition in non-cooperative environments, iris segmentation has been regarded as the first most important challenge still open to the biometric community, affecting all downstream tasks from normalization to recognition. In recent years, deep learning technologies have gained significant popularity among various computer vision tasks and also been introduced in iris biometrics, especially iris segmentation. To investigate recent developments and attract more interest of researchers in the iris segmentation method, we organized the 2021 NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization (NIR-ISL 2021) at the 2021 International Joint Conference on Biometrics (IJCB 2021). The challenge was used as a public platform to assess the performance of iris segmentation and localization methods on Asian and African NIR iris images captured in non-cooperative environments. The three best-performing entries achieved solid and satisfactory iris segmentation and localization results in most cases, and their code and models have been made publicly available for reproducibility research.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

For iris recognition in non-cooperative environments, iris segmentation has been regarded as the first most important challenge still open to the biometric community, affecting all downstream tasks from normalization to recognition. In recent years, deep learning technologies have gained significant popularity among various computer vision tasks and also been introduced in iris biometrics, especially iris segmentation. To investigate recent developments and attract more interest of researchers in the iris segmentation method, we organized the 2021 NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization (NIR-ISL 2021) at the 2021 International Joint Conference on Biometrics (IJCB 2021). The challenge was used as a public platform to assess the performance of iris segmentation and localization methods on Asian and African NIR iris images captured in non-cooperative environments. The three best-performing entries achieved solid and satisfactory iris segmentation and localization results in most cases, and their code and models have been made publicly available for reproducibility research.
非合作环境下近红外虹膜挑战评估:分割与定位
对于非合作环境下的虹膜识别,虹膜分割一直是生物识别界面临的首要挑战,影响着从归一化到识别的所有下游任务。近年来,深度学习技术在各种计算机视觉任务中获得了显著的普及,也被引入到虹膜生物识别中,特别是虹膜分割。为了研究虹膜分割方法的最新发展并吸引更多研究人员的兴趣,我们在2021年国际生物识别联合会议(IJCB 2021)上组织了2021年非合作环境下的NIR虹膜挑战评估:分割和定位(NIR- isl 2021)。该挑战被用作评估虹膜分割和定位方法在非合作环境下捕获的亚洲和非洲近红外虹膜图像上的性能的公共平台。在大多数情况下,表现最好的三个条目都取得了可靠且令人满意的虹膜分割和定位结果,并且它们的代码和模型已经公开用于可重复性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信