Design of a Turbopiston Pump Guided by Computational Analysis

Ting Wang, P. Rousset
{"title":"Design of a Turbopiston Pump Guided by Computational Analysis","authors":"Ting Wang, P. Rousset","doi":"10.1115/imece2019-10636","DOIUrl":null,"url":null,"abstract":"\n An innovative pump, TurboPiston Pump (TPP), has been invented to incorporate the merits of centrifugal, axial, and positive displacement pumps. The TPP is designed to deliver large flow rates with a potential at high pressure of up to 1000 psia with one stage. To improve the original design, an understanding of the flow behavior inside the pump is needed. The objective of this study is to simulate the flow field inside the pump and study its performance to guide the design process. This study includes modeling the pump with the transient sliding mesh scheme using a commercial computational fluid dynamics solver, ANSYS/FLUENT. The flow pattern, static pressure distribution, and total pressure losses are calculated and analyzed. The regions of high total pressure losses and potential creation of cavitation are identified. A plastic demonstration model and a metal prototype have been fabricated based on the result of the CFD analyis.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative pump, TurboPiston Pump (TPP), has been invented to incorporate the merits of centrifugal, axial, and positive displacement pumps. The TPP is designed to deliver large flow rates with a potential at high pressure of up to 1000 psia with one stage. To improve the original design, an understanding of the flow behavior inside the pump is needed. The objective of this study is to simulate the flow field inside the pump and study its performance to guide the design process. This study includes modeling the pump with the transient sliding mesh scheme using a commercial computational fluid dynamics solver, ANSYS/FLUENT. The flow pattern, static pressure distribution, and total pressure losses are calculated and analyzed. The regions of high total pressure losses and potential creation of cavitation are identified. A plastic demonstration model and a metal prototype have been fabricated based on the result of the CFD analyis.
基于计算分析的涡轮活塞泵设计
一种创新的泵,涡轮活塞泵(TPP),已被发明,结合离心泵,轴向泵和容积泵的优点。TPP的设计目的是在单级高压下提供高达1000 psia的大流量。为了改进原来的设计,需要了解泵内部的流动特性。本研究的目的是模拟泵的内部流场,研究其性能,以指导设计过程。本研究包括使用商用计算流体动力学求解器ANSYS/FLUENT对泵进行瞬态滑动网格方案建模。计算和分析了流型、静压分布和总压损失。确定了高总压损失和可能产生空化的区域。基于CFD分析结果,制作了塑性模型和金属样机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信