Reversible Data Hiding for SMVQ Compressed Images Based on De-Clustering Rules

Kunpeng Sun, Ji-Hwei Horng, C. Chang
{"title":"Reversible Data Hiding for SMVQ Compressed Images Based on De-Clustering Rules","authors":"Kunpeng Sun, Ji-Hwei Horng, C. Chang","doi":"10.1109/SNPD51163.2021.9704947","DOIUrl":null,"url":null,"abstract":"Vector quantization (VQ) is a popular digital image compression technique. Its resulting index table can be further compressed using the side match vector quantization (SMVQ). In this research, we propose a reversible data hiding scheme based on the de-clustering rules to embed secret data during SMVQ compression. Referring to differently assigned codebooks, the de-clustering rules are equally applicable to both compressible and uncompressible VQ indices. The proposed scheme can produce a camouflaged VQ index table with a high payload. Besides, our scheme is free from the indicator bit, which is required in the conventional SMVQ. Experimental results are compared with state-of-the-art methods.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9704947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vector quantization (VQ) is a popular digital image compression technique. Its resulting index table can be further compressed using the side match vector quantization (SMVQ). In this research, we propose a reversible data hiding scheme based on the de-clustering rules to embed secret data during SMVQ compression. Referring to differently assigned codebooks, the de-clustering rules are equally applicable to both compressible and uncompressible VQ indices. The proposed scheme can produce a camouflaged VQ index table with a high payload. Besides, our scheme is free from the indicator bit, which is required in the conventional SMVQ. Experimental results are compared with state-of-the-art methods.
基于去聚类规则的SMVQ压缩图像可逆数据隐藏
矢量量化(VQ)是一种流行的数字图像压缩技术。它的结果索引表可以使用侧匹配矢量量化(SMVQ)进一步压缩。在本研究中,我们提出了一种基于去聚类规则的可逆数据隐藏方案来嵌入SMVQ压缩过程中的秘密数据。对于不同分配的码本,该去聚规则同样适用于可压缩和不可压缩的VQ索引。该方案可以生成一个高负载的伪装VQ索引表。此外,我们的方案省去了传统SMVQ所需要的指示位。实验结果与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信