Sparse Macro Factors

D. Rapach, Guofu Zhou
{"title":"Sparse Macro Factors","authors":"D. Rapach, Guofu Zhou","doi":"10.2139/ssrn.3259447","DOIUrl":null,"url":null,"abstract":"We use machine learning to estimate sparse principal components (PCs) for 120 monthly macro variables spanning 1960:02 to 2018:06 from the FRED-MD database. For comparison, we also extract the first ten conventional PCs from the macro variables. Each of the conventional PCs is a linear combination of all the underlying macro variables, making them difficult to interpret. In contrast, each of the sparse PCs is a sparse linear combination, whose active weights allow for intuitive economic interpretations of the sparse PCs. The first ten sparse PCs can be interpreted as yields, inflation, production, housing, employment, yield spreads, wages, optimism, money, and credit. Innovations to the conventional (sparse) PCs constitute a set of conventional (sparse) macro factors. Robust tests indicate that only one of the conventional macro factors earns a signficant risk premium. In contrast, three of sparse macro factors — corresponding to yields, housing, and optimism — earn signficant risk premia. Compared to leading risk factors from the literature, mimicking portfolios for the yields, housing, and optimism factors deliver sizable Sharpe ratios. A four-factor model comprised of the market factor and mimicking portfolio returns for the yields, housing, and optimism factors performs on par with or better than leading multi-factor models from the literature in accounting for numerous anomalies in cross-sectional stock returns.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3259447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We use machine learning to estimate sparse principal components (PCs) for 120 monthly macro variables spanning 1960:02 to 2018:06 from the FRED-MD database. For comparison, we also extract the first ten conventional PCs from the macro variables. Each of the conventional PCs is a linear combination of all the underlying macro variables, making them difficult to interpret. In contrast, each of the sparse PCs is a sparse linear combination, whose active weights allow for intuitive economic interpretations of the sparse PCs. The first ten sparse PCs can be interpreted as yields, inflation, production, housing, employment, yield spreads, wages, optimism, money, and credit. Innovations to the conventional (sparse) PCs constitute a set of conventional (sparse) macro factors. Robust tests indicate that only one of the conventional macro factors earns a signficant risk premium. In contrast, three of sparse macro factors — corresponding to yields, housing, and optimism — earn signficant risk premia. Compared to leading risk factors from the literature, mimicking portfolios for the yields, housing, and optimism factors deliver sizable Sharpe ratios. A four-factor model comprised of the market factor and mimicking portfolio returns for the yields, housing, and optimism factors performs on par with or better than leading multi-factor models from the literature in accounting for numerous anomalies in cross-sectional stock returns.
稀疏宏观因素
我们使用机器学习来估计FRED-MD数据库中跨越1960:02至2018:06的120个月度宏观变量的稀疏主成分(PCs)。为了比较,我们还从宏观变量中提取了前十个传统pc。每个传统pc都是所有潜在宏观变量的线性组合,这使得它们难以解释。相反,每个稀疏pc都是一个稀疏线性组合,其主动权重允许对稀疏pc进行直观的经济解释。前十个稀疏pc可以解释为收益率、通货膨胀、生产、住房、就业、收益率差、工资、乐观、货币和信贷。对传统(稀疏)pc的创新构成了一组传统(稀疏)宏观因素。稳健检验表明,只有一个常规宏观因素获得显著的风险溢价。相比之下,三个稀疏的宏观因素——收益率、住房和乐观情绪——获得了显著的风险溢价。与文献中的主要风险因素相比,收益率、住房和乐观因素的模拟投资组合提供了相当大的夏普比率。一个由市场因素和模拟收益率、住房和乐观因素的投资组合回报组成的四因素模型,在解释横截面股票回报中的许多异常方面,与文献中领先的多因素模型相当或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信