Human Action Recognition Using Spatio-Temporal Multiplier Network and Attentive Correlated Temporal Feature

C. Indhumathi, V. Murugan, G. Muthulakshmii
{"title":"Human Action Recognition Using Spatio-Temporal Multiplier Network and Attentive Correlated Temporal Feature","authors":"C. Indhumathi, V. Murugan, G. Muthulakshmii","doi":"10.1142/s0219467822500516","DOIUrl":null,"url":null,"abstract":"Nowadays, action recognition has gained more attention from the computer vision community. Normally for recognizing human actions, spatial and temporal features are extracted. Two-stream convolutional neural network is used commonly for human action recognition in videos. In this paper, Adaptive motion Attentive Correlated Temporal Feature (ACTF) is used for temporal feature extractor. The temporal average pooling in inter-frame is used for extracting the inter-frame regional correlation feature and mean feature. This proposed method has better accuracy of 96.9% for UCF101 and 74.6% for HMDB51 datasets, respectively, which are higher than the other state-of-the-art methods.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467822500516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Nowadays, action recognition has gained more attention from the computer vision community. Normally for recognizing human actions, spatial and temporal features are extracted. Two-stream convolutional neural network is used commonly for human action recognition in videos. In this paper, Adaptive motion Attentive Correlated Temporal Feature (ACTF) is used for temporal feature extractor. The temporal average pooling in inter-frame is used for extracting the inter-frame regional correlation feature and mean feature. This proposed method has better accuracy of 96.9% for UCF101 and 74.6% for HMDB51 datasets, respectively, which are higher than the other state-of-the-art methods.
基于时空乘数网络和注意相关时间特征的人体动作识别
目前,动作识别已经受到计算机视觉界的广泛关注。为了识别人类的行为,通常提取空间和时间特征。双流卷积神经网络是视频中常用的人体动作识别方法。本文将自适应运动关注相关时间特征(ACTF)用于时间特征提取。采用帧间时间平均池化方法提取帧间区域相关特征和均值特征。该方法在UCF101和HMDB51数据集上的准确率分别为96.9%和74.6%,高于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信