{"title":"A CMOS/partial-SOI structure for future ULSIs","authors":"K. Terada, T. Ishijima, T. Kubota, M. Sakao","doi":"10.1109/SOI.1988.95411","DOIUrl":null,"url":null,"abstract":"An MOS transistor formed partly on lateral epitaxial silicon film on insulator (called the TOLE structure) has been proposed and applied to a DRAM cell. The authors have investigated the potential of the CMOS-TOLE structure for application to future ultra-large-scale integrated circuits (ULSIs). The test CMOS-TOLEs had a 400-nm-thick SiO/sub 2/ film for the SOI insulator, a 100 approximately 200-nm-thick silicon film, and a 20-nm-thick gate oxide. The designed channel width and length for the CMOS-TOLEs measured were 20/2 approximately 2.5 and 6/2 mu m. The bulk part length was 1.2 mu m. The advantages and properties of the structure are discussed. It has been estimated that the necessary storage charge for the CMOS-TOLE DRAM is about 40% of that for the bulk CMOS DRAM and that the typical logic gate delay for the CMOS-TOLE is about 60% of that for the bulk CMOS. Parasitic sidewall channel formation, which is a problem for the n-channel TOLE due to its isolation structure, has been suppressed by channel side impurity control. The leakage current level has been reduced to a value approximately ten times larger than that for the conventional bulk junction.<<ETX>>","PeriodicalId":391934,"journal":{"name":"Proceedings. SOS/SOI Technology Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. SOS/SOI Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1988.95411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An MOS transistor formed partly on lateral epitaxial silicon film on insulator (called the TOLE structure) has been proposed and applied to a DRAM cell. The authors have investigated the potential of the CMOS-TOLE structure for application to future ultra-large-scale integrated circuits (ULSIs). The test CMOS-TOLEs had a 400-nm-thick SiO/sub 2/ film for the SOI insulator, a 100 approximately 200-nm-thick silicon film, and a 20-nm-thick gate oxide. The designed channel width and length for the CMOS-TOLEs measured were 20/2 approximately 2.5 and 6/2 mu m. The bulk part length was 1.2 mu m. The advantages and properties of the structure are discussed. It has been estimated that the necessary storage charge for the CMOS-TOLE DRAM is about 40% of that for the bulk CMOS DRAM and that the typical logic gate delay for the CMOS-TOLE is about 60% of that for the bulk CMOS. Parasitic sidewall channel formation, which is a problem for the n-channel TOLE due to its isolation structure, has been suppressed by channel side impurity control. The leakage current level has been reduced to a value approximately ten times larger than that for the conventional bulk junction.<>