Yang Zhao, Ankang Ruan, Guohang Dan, Jicheng Huang, Yi Ding
{"title":"Efficient Multi-Authority Attribute-based Signcryption with Constant-Size Ciphertext","authors":"Yang Zhao, Ankang Ruan, Guohang Dan, Jicheng Huang, Yi Ding","doi":"10.1109/DSC49826.2021.9346249","DOIUrl":null,"url":null,"abstract":"Recently, efficient fine-grained access mechanism has been studied as a main concern in cloud storage area for several years. Attribute-based signcryption (ABSC) which is logical combination of attribute-based encryption(ABE) and attribute-based signature(ABS), can provide confidentiality, authenticity for sensitive data and anonymous authentication. At the same time it is more efficient than previous “encrypt-then-sign” and “sign-then-encrypt” patterns. However, most of the existing ABSC schemes fail to serve for real scenario of multiple authorities and have heavy communication overhead and computing overhead. Hence, we construct a novel ABSC scheme realizing multi-authority access control and constant-size ciphertext that does not depend on the number of attributes or authorities. Furthermore, our scheme provides public verifiability of the ciphertext and privacy protection for the signcryptor. Specially, it is proven to be secure in the standard model, including ciphertext indistinguishability under adaptive chosen ciphertext attacks and existential unforgeability under adaptive chosen message attack.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, efficient fine-grained access mechanism has been studied as a main concern in cloud storage area for several years. Attribute-based signcryption (ABSC) which is logical combination of attribute-based encryption(ABE) and attribute-based signature(ABS), can provide confidentiality, authenticity for sensitive data and anonymous authentication. At the same time it is more efficient than previous “encrypt-then-sign” and “sign-then-encrypt” patterns. However, most of the existing ABSC schemes fail to serve for real scenario of multiple authorities and have heavy communication overhead and computing overhead. Hence, we construct a novel ABSC scheme realizing multi-authority access control and constant-size ciphertext that does not depend on the number of attributes or authorities. Furthermore, our scheme provides public verifiability of the ciphertext and privacy protection for the signcryptor. Specially, it is proven to be secure in the standard model, including ciphertext indistinguishability under adaptive chosen ciphertext attacks and existential unforgeability under adaptive chosen message attack.