Guowei Chen, Trieu-Khang Tu, Chun-Lin Chen, M. Tsai
{"title":"Synchronized Motion Control for Electronic Differential System via Planetary Gear Mechanism","authors":"Guowei Chen, Trieu-Khang Tu, Chun-Lin Chen, M. Tsai","doi":"10.1109/CACS47674.2019.9024359","DOIUrl":null,"url":null,"abstract":"Considering the appealing transmission feature of planetary gear, this study presents a new electronic differential system (EDS) for electrical vehicles. The electronically-controlled transmission (E-CVT) of rear-wheel speeds regulation can be easily realized by the kinematic analysis of planetary gear. For EDS, simultaneously maintaining the trajectory and rear-wheel speeds in uncertain environments is also an essential problem. Therefore, a synchronized motion control structure is employed such that the synchronized speed error is reduced and the desired speed differential is achieved. The simulation results are given to validate the performance of the synchronized motion control for the dual E-CVT system used in EDS.","PeriodicalId":247039,"journal":{"name":"2019 International Automatic Control Conference (CACS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS47674.2019.9024359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the appealing transmission feature of planetary gear, this study presents a new electronic differential system (EDS) for electrical vehicles. The electronically-controlled transmission (E-CVT) of rear-wheel speeds regulation can be easily realized by the kinematic analysis of planetary gear. For EDS, simultaneously maintaining the trajectory and rear-wheel speeds in uncertain environments is also an essential problem. Therefore, a synchronized motion control structure is employed such that the synchronized speed error is reduced and the desired speed differential is achieved. The simulation results are given to validate the performance of the synchronized motion control for the dual E-CVT system used in EDS.