An Application of Neural Networks to Predicting Mastery of Learning Outcomes in the Treatment of Autism Spectrum Disorder

Erik J. Linstead, Rene German, Dennis R. Dixon, D. Granpeesheh, Marlena N. Novack, Alva Powell
{"title":"An Application of Neural Networks to Predicting Mastery of Learning Outcomes in the Treatment of Autism Spectrum Disorder","authors":"Erik J. Linstead, Rene German, Dennis R. Dixon, D. Granpeesheh, Marlena N. Novack, Alva Powell","doi":"10.1109/ICMLA.2015.214","DOIUrl":null,"url":null,"abstract":"We apply artificial neural networks to the task of predicting the mastery of learning outcomes in response to behavioral therapy for children diagnosed with autism spectrum disorder. We report results for a sample size of 726 children, the largest sample size reported for a study of this nature to date. Our results show that neural networks substantially outperform the linear regression models reported in previous studies, and demonstrate the benefits of leveraging more sophisticated machine learning techniques in the autism research domain.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We apply artificial neural networks to the task of predicting the mastery of learning outcomes in response to behavioral therapy for children diagnosed with autism spectrum disorder. We report results for a sample size of 726 children, the largest sample size reported for a study of this nature to date. Our results show that neural networks substantially outperform the linear regression models reported in previous studies, and demonstrate the benefits of leveraging more sophisticated machine learning techniques in the autism research domain.
神经网络在自闭症谱系障碍治疗中预测学习结果掌握的应用
我们应用人工神经网络来预测自闭症谱系障碍儿童在接受行为治疗后对学习结果的掌握程度。我们报告了726名儿童样本量的结果,这是迄今为止此类研究报告的最大样本量。我们的研究结果表明,神经网络在很大程度上优于先前研究中报道的线性回归模型,并证明了在自闭症研究领域利用更复杂的机器学习技术的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信