Towards Lattice QCD+QED Simulations on GPUs

Roman Gruber, Anton Kozhevnikov, M. Marinković, T. Schulthess, R. Solcà
{"title":"Towards Lattice QCD+QED Simulations on GPUs","authors":"Roman Gruber, Anton Kozhevnikov, M. Marinković, T. Schulthess, R. Solcà","doi":"10.1145/3592979.3593406","DOIUrl":null,"url":null,"abstract":"Improving the precision in particle physics predictions obtained from lattice simulations of quantum chromodynamics (QCD) requires extension of the interactions considered thus far, leading to additional computational demands. Most commonly used publicly available program packages for efficient simulations of Wilson discretization of the Dirac operator are highly scalable on CPU hardware. In order to be able to run efficiently on existing and upcoming hybrid architectures, one needs to rethink the current strategy for data types used at different stages of the simulation, most notably in frequent solves of the Dirac equation. We perform the first steps towards porting on GPUs of the three type of solvers used in the simulations of clover improved Wilson fermions: Conjugate Gradient, Schwarz preconditioned GCR solver, and a variant of the deflated solver. The analysis of the reduced precision data types' impact on the convergence of each solver indicates several possibilities for overall performance improvement.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592979.3593406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the precision in particle physics predictions obtained from lattice simulations of quantum chromodynamics (QCD) requires extension of the interactions considered thus far, leading to additional computational demands. Most commonly used publicly available program packages for efficient simulations of Wilson discretization of the Dirac operator are highly scalable on CPU hardware. In order to be able to run efficiently on existing and upcoming hybrid architectures, one needs to rethink the current strategy for data types used at different stages of the simulation, most notably in frequent solves of the Dirac equation. We perform the first steps towards porting on GPUs of the three type of solvers used in the simulations of clover improved Wilson fermions: Conjugate Gradient, Schwarz preconditioned GCR solver, and a variant of the deflated solver. The analysis of the reduced precision data types' impact on the convergence of each solver indicates several possibilities for overall performance improvement.
基于gpu的点阵QCD+QED仿真研究
提高量子色动力学(QCD)晶格模拟得到的粒子物理预测的精度需要扩展迄今为止所考虑的相互作用,从而导致额外的计算需求。最常用的公开可用的程序包,有效地模拟威尔逊离散狄拉克算子是高度可扩展的CPU硬件。为了能够在现有和即将到来的混合架构上高效运行,需要重新考虑在模拟的不同阶段使用的数据类型的当前策略,尤其是在频繁解决Dirac方程时。我们执行了在gpu上移植用于模拟三叶草改进威尔逊费米子的三种类型的求解器的第一步:共轭梯度,Schwarz预处理GCR求解器和deflated求解器的变体。对降低精度的数据类型对每个求解器收敛性的影响的分析指出了提高整体性能的几种可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信