Functional mapping of desired signals for improved performance of fully dynamic supervised neural networks with a fixed pole IIR structure

D.E. Whitehead, G. Coutu, T. Lewis, D. Sturim
{"title":"Functional mapping of desired signals for improved performance of fully dynamic supervised neural networks with a fixed pole IIR structure","authors":"D.E. Whitehead, G. Coutu, T. Lewis, D. Sturim","doi":"10.1109/ACSSC.1993.342545","DOIUrl":null,"url":null,"abstract":"A new method is presented of functional mapping of the desired signal used for the training of dynamic supervised neural networks that contain fixed pole IIR structures. The idea is to pass the desired signal through the same number and form of nonlinearities as the data encounters as it passes from the input to the output layer. The neural network has three layers: a filterbank of fixed pole three IIR bandpass filters with variable gains, an intermediate layer of two multiplicative coefficients, and an output layer. The outputs of the input and intermediate layers are passed through logistic nonlinearities.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new method is presented of functional mapping of the desired signal used for the training of dynamic supervised neural networks that contain fixed pole IIR structures. The idea is to pass the desired signal through the same number and form of nonlinearities as the data encounters as it passes from the input to the output layer. The neural network has three layers: a filterbank of fixed pole three IIR bandpass filters with variable gains, an intermediate layer of two multiplicative coefficients, and an output layer. The outputs of the input and intermediate layers are passed through logistic nonlinearities.<>
期望信号的函数映射以提高具有固定极点IIR结构的全动态监督神经网络的性能
提出了一种新的期望信号的函数映射方法,用于包含固定极点IIR结构的动态监督神经网络的训练。其思想是通过与数据从输入层传递到输出层时所遇到的相同数量和形式的非线性来传递所需的信号。神经网络有三层:一个固定极三个可变增益IIR带通滤波器的滤波器组,一个两个相乘系数的中间层和一个输出层。输入层和中间层的输出通过逻辑非线性传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信