Probability hypothesis density filter for adjacent multi-target tracking

Mian Wu, Daikun Zheng, Junquan Yuan, A. Chen, Chang Zhou, Wenfeng Chen
{"title":"Probability hypothesis density filter for adjacent multi-target tracking","authors":"Mian Wu, Daikun Zheng, Junquan Yuan, A. Chen, Chang Zhou, Wenfeng Chen","doi":"10.1117/12.2588928","DOIUrl":null,"url":null,"abstract":"In the adjacent multi-target scenario, the Gaussian mixture probability hypothesis density (GM-PHD) algorithm encounters problems of inaccurate target number estimation and low tracking accuracy. To tackle these problems, this paper proposes an improved components management strategy for GM-PHD algorithm. We develop a master-slave mode to process Gaussian components, the master components whose weights exceed the extraction threshold are retained to avoid merging them each other, which guarantees the accuracy of target number estimation. Meanwhile, the slave components which satisfying the merging conditions are merged with the corresponding master components to improve the target tracking accuracy. Simulation results show that the proposed algorithm can achieve better performance than conventional GM-PHD algorithm in different clutter environments.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2588928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the adjacent multi-target scenario, the Gaussian mixture probability hypothesis density (GM-PHD) algorithm encounters problems of inaccurate target number estimation and low tracking accuracy. To tackle these problems, this paper proposes an improved components management strategy for GM-PHD algorithm. We develop a master-slave mode to process Gaussian components, the master components whose weights exceed the extraction threshold are retained to avoid merging them each other, which guarantees the accuracy of target number estimation. Meanwhile, the slave components which satisfying the merging conditions are merged with the corresponding master components to improve the target tracking accuracy. Simulation results show that the proposed algorithm can achieve better performance than conventional GM-PHD algorithm in different clutter environments.
相邻多目标跟踪的概率假设密度滤波
在相邻多目标场景下,高斯混合概率假设密度(GM-PHD)算法存在目标数估计不准确、跟踪精度低等问题。针对这些问题,本文提出了一种改进的GM-PHD算法组件管理策略。采用主从模式对高斯分量进行处理,保留了权值超过提取阈值的主分量,避免了主分量相互合并,保证了目标数估计的准确性。同时,将满足合并条件的从分量与相应的主分量合并,以提高目标跟踪精度。仿真结果表明,在不同的杂波环境下,该算法比传统的GM-PHD算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信