Deep Learning for Continuous Multiple Time Series Annotations

Jian Huang, Ya Li, J. Tao, Zheng Lian, Mingyue Niu, Minghao Yang
{"title":"Deep Learning for Continuous Multiple Time Series Annotations","authors":"Jian Huang, Ya Li, J. Tao, Zheng Lian, Mingyue Niu, Minghao Yang","doi":"10.1145/3266302.3266305","DOIUrl":null,"url":null,"abstract":"Learning from multiple annotations is an increasingly important research topic. Compared with conventional classification or regression problems, it faces more challenges because time-continuous annotations would result in noisy and temporal lags problems for continuous emotion recognition. In this paper, we address the problem by deep learning for continuous multiple time series annotations. We attach a novel crowd layer to the output layer of basic continuous emotion recognition system, which learns directly from the noisy labels of multiple annotators with end-to-end manner. The inputs of the system are multimodal features and the targets are multiple annotations, with the intention of learning an annotator-specific mapping. Our proposed method considers the ground truth as latent variables and multiple annotations are variant of ground truth by linear mapping. The experimental results show that our system can achieve superior performance and capture the reliabilities and biases of different annotators.","PeriodicalId":123523,"journal":{"name":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266302.3266305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Learning from multiple annotations is an increasingly important research topic. Compared with conventional classification or regression problems, it faces more challenges because time-continuous annotations would result in noisy and temporal lags problems for continuous emotion recognition. In this paper, we address the problem by deep learning for continuous multiple time series annotations. We attach a novel crowd layer to the output layer of basic continuous emotion recognition system, which learns directly from the noisy labels of multiple annotators with end-to-end manner. The inputs of the system are multimodal features and the targets are multiple annotations, with the intention of learning an annotator-specific mapping. Our proposed method considers the ground truth as latent variables and multiple annotations are variant of ground truth by linear mapping. The experimental results show that our system can achieve superior performance and capture the reliabilities and biases of different annotators.
连续多时间序列注释的深度学习
从多个注释中学习是一个越来越重要的研究课题。与传统的分类或回归问题相比,时间连续注释会导致持续的情绪识别存在噪声和时间滞后问题,因此面临着更多的挑战。在本文中,我们通过深度学习来解决连续多时间序列注释的问题。我们在基本连续情感识别系统的输出层上附加了一个新的人群层,该系统以端到端的方式直接从多个标注者的噪声标签中学习。系统的输入是多模态特征,目标是多个注释,目的是学习特定于注释器的映射。该方法将真值作为潜在变量,通过线性映射将多个标注作为真值的变体。实验结果表明,该系统能够很好地捕捉到不同标注者的可靠性和偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信