Protein structure prediction using physical-based global optimization and knowledge-guided fragment packing

Jinhui Ding, E. Eskow, N. Max, S. Crivelli
{"title":"Protein structure prediction using physical-based global optimization and knowledge-guided fragment packing","authors":"Jinhui Ding, E. Eskow, N. Max, S. Crivelli","doi":"10.1109/CSBW.2005.115","DOIUrl":null,"url":null,"abstract":"We describe a new method to predict the tertiary structure of new-fold proteins. Our two-phase approach combines the knowledge-based fragment-packing with the minimization of a physics-based energy function. The method is one of the few attempts to use an all-atom physics-based energy function throughout all stages of the optimization. Information from the known proteins is utilized to guide the search through the vast conformational space. We tested this method in CASP6 and it produced the best prediction on one of the new-fold targets-T238, alpha-helical protein. After CASP6, we carried out a series of experiments to test and improve our method and we found that our method performed well on alpha-helical proteins.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a new method to predict the tertiary structure of new-fold proteins. Our two-phase approach combines the knowledge-based fragment-packing with the minimization of a physics-based energy function. The method is one of the few attempts to use an all-atom physics-based energy function throughout all stages of the optimization. Information from the known proteins is utilized to guide the search through the vast conformational space. We tested this method in CASP6 and it produced the best prediction on one of the new-fold targets-T238, alpha-helical protein. After CASP6, we carried out a series of experiments to test and improve our method and we found that our method performed well on alpha-helical proteins.
基于物理全局优化和知识引导片段打包的蛋白质结构预测
我们描述了一种预测新折叠蛋白三级结构的新方法。我们的两阶段方法结合了基于知识的碎片打包和基于物理的能量函数的最小化。该方法是在优化的所有阶段使用基于全原子物理的能量函数的少数尝试之一。来自已知蛋白质的信息被用来指导在巨大的构象空间中的搜索。我们在CASP6中测试了这种方法,并对其中一个新折叠靶标- - -螺旋蛋白t238进行了最好的预测。在CASP6之后,我们进行了一系列的实验来测试和改进我们的方法,我们发现我们的方法在α -螺旋蛋白上表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信