Classification of Stock Price Movement With Sentiment Analysis and Commodity Price: Case Study of Metals and Mining Sector

Nadika Sigit Sinatrya, I. Budi, Aris Budi Santoso
{"title":"Classification of Stock Price Movement With Sentiment Analysis and Commodity Price: Case Study of Metals and Mining Sector","authors":"Nadika Sigit Sinatrya, I. Budi, Aris Budi Santoso","doi":"10.1109/ICACSIS56558.2022.9923452","DOIUrl":null,"url":null,"abstract":"The unstable nature and complex behavior of the stock market make the prediction or forecasting process very difficult. The high level of debt and the declining price-earning ratio have bad implications for investment in metals and mining sector. This paper proposes a classification model for stock price movement based on financial news data, historical stock prices and commodity price data. We experiment with Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neighbor (KNN) algorithm. The classifier then categorized the price into “up”, “down”, and “constant”. The result shows that the best model is achieved by Naive Bayes Algorithm with an accuracy of 60% in three days period by combining copper price and sentiment analysis features.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unstable nature and complex behavior of the stock market make the prediction or forecasting process very difficult. The high level of debt and the declining price-earning ratio have bad implications for investment in metals and mining sector. This paper proposes a classification model for stock price movement based on financial news data, historical stock prices and commodity price data. We experiment with Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neighbor (KNN) algorithm. The classifier then categorized the price into “up”, “down”, and “constant”. The result shows that the best model is achieved by Naive Bayes Algorithm with an accuracy of 60% in three days period by combining copper price and sentiment analysis features.
基于情绪分析和商品价格的股票价格变动分类:以金属和矿业板块为例
股票市场的不稳定性和复杂行为使得预测或预测过程非常困难。高水平的债务和不断下降的市盈率对金属和采矿业的投资产生了不利影响。本文提出了一种基于财经新闻数据、历史股票价格和商品价格数据的股票价格变动分类模型。我们使用支持向量机(SVM)、朴素贝叶斯(Naive Bayes)和k -最近邻(KNN)算法进行实验。然后分类器将价格分为“上涨”、“下跌”和“不变”。结果表明,结合铜价和情绪分析特征,朴素贝叶斯算法在三天周期内获得了最好的模型,准确率达到60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信