An Empirical Study on Big Video Data Processing: Architectural Styles, Issues, and Challenges

Weishan Zhang, Zhichao Wang, Liang Xu, Dehai Zhao, Faming Gong, Q. Lu
{"title":"An Empirical Study on Big Video Data Processing: Architectural Styles, Issues, and Challenges","authors":"Weishan Zhang, Zhichao Wang, Liang Xu, Dehai Zhao, Faming Gong, Q. Lu","doi":"10.1109/IIKI.2016.7","DOIUrl":null,"url":null,"abstract":"Video data contributes to the majority of big data, henceforth, how to efficiently and effectively discovering knowledge from large-scale video data becomes a crucial challenge. In this paper, we propose multiple architectural styles for the domain of large-scale video data analytics services. These styles include online combined with offline processing style, distributed shared repositories, image mining and prediction services with deep learning techniques. These architectural styles are successfully implemented and examined in a number of domains including smart traffic and smart drones, as demonstrated in a middleware developed specifically for large-scale continuous video data processing.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Video data contributes to the majority of big data, henceforth, how to efficiently and effectively discovering knowledge from large-scale video data becomes a crucial challenge. In this paper, we propose multiple architectural styles for the domain of large-scale video data analytics services. These styles include online combined with offline processing style, distributed shared repositories, image mining and prediction services with deep learning techniques. These architectural styles are successfully implemented and examined in a number of domains including smart traffic and smart drones, as demonstrated in a middleware developed specifically for large-scale continuous video data processing.
大视频数据处理的实证研究:架构风格、问题与挑战
视频数据占了大数据的绝大部分,因此,如何从大规模的视频数据中高效、有效地发现知识成为一个至关重要的挑战。在本文中,我们为大规模视频数据分析服务领域提出了多种架构风格。这些风格包括在线结合离线处理风格、分布式共享存储库、图像挖掘和深度学习技术的预测服务。这些架构风格在包括智能交通和智能无人机在内的许多领域都得到了成功的实现和检验,正如专门为大规模连续视频数据处理开发的中间件所展示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信