Predicting how you respond to phone calls: towards discovering temporal behavioral rules

Iqbal H. Sarker, M. A. Kabir, A. Colman, Jun Han
{"title":"Predicting how you respond to phone calls: towards discovering temporal behavioral rules","authors":"Iqbal H. Sarker, M. A. Kabir, A. Colman, Jun Han","doi":"10.1145/3010915.3010979","DOIUrl":null,"url":null,"abstract":"Discovering temporal rules that capture an individual's phone call response behavior is essential to building intelligent individualized call interruption management system. The key challenge to discovering such temporal rules is identifying within a phone call log the time boundaries that delineate periods when an individual user rejects or accepts phone calls. Moreover, potential data sparsity in phone call logs imposes additional challenge in discovering applicable rules. In this paper, we address the above issues and present a hybrid approach to identify the effective time boundaries for discovering temporal behavioral rules of individual mobile phone users utilizing calendar and mobile phone data. Our preliminary experiments on real datasets show that our proposed hybrid approach dynamically identifies better time boundaries based on like behavioral patterns and outperforms the existing calendar-based approach (CBA) and log-based approach (LBA) to discovering the temporal behavior rules of individual mobile phone users.","PeriodicalId":309823,"journal":{"name":"Proceedings of the 28th Australian Conference on Computer-Human Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Australian Conference on Computer-Human Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3010915.3010979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Discovering temporal rules that capture an individual's phone call response behavior is essential to building intelligent individualized call interruption management system. The key challenge to discovering such temporal rules is identifying within a phone call log the time boundaries that delineate periods when an individual user rejects or accepts phone calls. Moreover, potential data sparsity in phone call logs imposes additional challenge in discovering applicable rules. In this paper, we address the above issues and present a hybrid approach to identify the effective time boundaries for discovering temporal behavioral rules of individual mobile phone users utilizing calendar and mobile phone data. Our preliminary experiments on real datasets show that our proposed hybrid approach dynamically identifies better time boundaries based on like behavioral patterns and outperforms the existing calendar-based approach (CBA) and log-based approach (LBA) to discovering the temporal behavior rules of individual mobile phone users.
预测你对电话的反应:发现时间行为规则
发现捕捉个体呼叫响应行为的时间规则对于构建智能个性化呼叫中断管理系统至关重要。发现这种时间规则的关键挑战是在电话记录中确定描述单个用户拒绝或接受电话的时间段的时间界限。此外,电话记录中潜在的数据稀疏性给发现适用规则带来了额外的挑战。在本文中,我们解决了上述问题,并提出了一种混合方法来确定有效的时间边界,以利用日历和手机数据来发现个人手机用户的时间行为规则。在实际数据集上进行的初步实验表明,本文提出的混合方法可以基于相似的行为模式动态识别更好的时间边界,并且在发现手机用户个体时间行为规则方面优于现有的基于日历的方法(CBA)和基于日志的方法(LBA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信