High dv/dt Testing of Coil Winding Insulation Systems for Wide-Bandgap Applications

V. Grau, Laurids Schmitz, R. D. De Doncker
{"title":"High dv/dt Testing of Coil Winding Insulation Systems for Wide-Bandgap Applications","authors":"V. Grau, Laurids Schmitz, R. D. De Doncker","doi":"10.23919/ICPE2023-ECCEAsia54778.2023.10213944","DOIUrl":null,"url":null,"abstract":"To increase efficiency and reduce material consumption, the increased use of wide-bandgap (WBG) power semiconductor devices becomes indispensable. However, challenges such as the accelerated aging of insulation materials have so far prevented exploiting the full potential of this technology. This paper provides an overview of experiments that can be performed to test insulation systems for their resilience with respect to fast switching transients. To this end, capacitive and inductive specimens are considered. Firstly, the test bench is briefly introduced. Secondly, measurements are performed with standardized twisted pair of enameled wire specimens. The lifetimes at two different voltage slopes are compared, the effect of a consistent discharge at steep voltage slopes is analyzed and the influence of a partial discharge (PD) resistant additive in the enamel is considered. Then, single-tooth coil windings with and without a PD-resistant additive in the enamel are investigated and the influence of an optimized winding configuration demonstrated.","PeriodicalId":151155,"journal":{"name":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICPE2023-ECCEAsia54778.2023.10213944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To increase efficiency and reduce material consumption, the increased use of wide-bandgap (WBG) power semiconductor devices becomes indispensable. However, challenges such as the accelerated aging of insulation materials have so far prevented exploiting the full potential of this technology. This paper provides an overview of experiments that can be performed to test insulation systems for their resilience with respect to fast switching transients. To this end, capacitive and inductive specimens are considered. Firstly, the test bench is briefly introduced. Secondly, measurements are performed with standardized twisted pair of enameled wire specimens. The lifetimes at two different voltage slopes are compared, the effect of a consistent discharge at steep voltage slopes is analyzed and the influence of a partial discharge (PD) resistant additive in the enamel is considered. Then, single-tooth coil windings with and without a PD-resistant additive in the enamel are investigated and the influence of an optimized winding configuration demonstrated.
宽禁带应用中线圈绕组绝缘系统的高dv/dt测试
为了提高效率和降低材料消耗,增加宽带隙(WBG)功率半导体器件的使用变得必不可少。然而,诸如绝缘材料加速老化等挑战迄今为止阻碍了这项技术的充分发挥。本文提供了一个实验的概述,可以执行测试绝缘系统的弹性相对于快速开关瞬态。为此,考虑了电容性和电感性试样。首先,对试验台进行了简要介绍。其次,采用标准化的漆包线双绞线试样进行测量。比较了两种不同电压坡下的寿命,分析了陡电压坡下连续放电的影响,并考虑了抗局部放电添加剂对牙釉质的影响。然后,研究了在牙釉质中添加抗pd添加剂和不添加抗pd添加剂的单齿线圈绕组,并展示了优化绕组结构的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信