{"title":"Deployment of a wireless sensor network in assembly, integration and test activities","authors":"M. Drobczyk, Hauke Martens","doi":"10.1109/WiSEE.2016.7877317","DOIUrl":null,"url":null,"abstract":"This paper evaluates the deployment of a wireless sensor network (WSN) to support and speed-up the assembly, integration and test activities in a satellite project. We focus on the thermal vacuum tests, which come along with an extensive amount of sensors to monitor the thermal behavior of the spacecraft. Recent work revealed a great potential; however, the focus was on passive technologies based on radio frequency identification (RFID), whereas this paper evaluates the deployment of a low-power active WSN based on the recently introduced IEEE 802.15.4e-2012 standard. Possible obstacles are examined and tests in a thermal vacuum chamber are performed to analyze the sensing capability in detail. Finally the results are presented, which demonstrate the functionality with a nearly error-free communication performance.","PeriodicalId":177862,"journal":{"name":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSEE.2016.7877317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper evaluates the deployment of a wireless sensor network (WSN) to support and speed-up the assembly, integration and test activities in a satellite project. We focus on the thermal vacuum tests, which come along with an extensive amount of sensors to monitor the thermal behavior of the spacecraft. Recent work revealed a great potential; however, the focus was on passive technologies based on radio frequency identification (RFID), whereas this paper evaluates the deployment of a low-power active WSN based on the recently introduced IEEE 802.15.4e-2012 standard. Possible obstacles are examined and tests in a thermal vacuum chamber are performed to analyze the sensing capability in detail. Finally the results are presented, which demonstrate the functionality with a nearly error-free communication performance.