Logo detection in images using HOG and SIFT

J. Glagolevs, Kārlis Freivalds
{"title":"Logo detection in images using HOG and SIFT","authors":"J. Glagolevs, Kārlis Freivalds","doi":"10.1109/AIEEE.2017.8270535","DOIUrl":null,"url":null,"abstract":"In this paper we present a study of logo detection in images from a media agency. We compare two most widely used methods — HOG and SIFT on a challenging dataset of images arising from a printed press and news portals. Despite common opinion that SIFT method is superior, our results show that HOG method performs significantly better on our dataset. We augment the HOG method with image resizing and rotation to improve its performance even more. We found out that by using such approach it is possible to obtain good results with increased recall and reasonably decreased precision.","PeriodicalId":224275,"journal":{"name":"2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2017.8270535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we present a study of logo detection in images from a media agency. We compare two most widely used methods — HOG and SIFT on a challenging dataset of images arising from a printed press and news portals. Despite common opinion that SIFT method is superior, our results show that HOG method performs significantly better on our dataset. We augment the HOG method with image resizing and rotation to improve its performance even more. We found out that by using such approach it is possible to obtain good results with increased recall and reasonably decreased precision.
基于HOG和SIFT的图像Logo检测
在本文中,我们提出了从一个媒体机构的图像标志检测的研究。我们比较了两种最广泛使用的方法- HOG和SIFT对来自印刷媒体和新闻门户网站的具有挑战性的图像数据集。尽管人们普遍认为SIFT方法更好,但我们的结果表明HOG方法在我们的数据集上表现得更好。我们通过图像大小调整和旋转来增强HOG方法,以进一步提高其性能。我们发现,通过使用这种方法,可以在提高召回率和合理降低精度的情况下获得良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信