ArbEngVec : Arabic-English Cross-Lingual Word Embedding Model

Raki Lachraf, El Moatez Billah Nagoudi, Youcef Ayachi, Ahmed Abdelali, D. Schwab
{"title":"ArbEngVec : Arabic-English Cross-Lingual Word Embedding Model","authors":"Raki Lachraf, El Moatez Billah Nagoudi, Youcef Ayachi, Ahmed Abdelali, D. Schwab","doi":"10.18653/v1/W19-4605","DOIUrl":null,"url":null,"abstract":"Word Embeddings (WE) are getting increasingly popular and widely applied in many Natural Language Processing (NLP) applications due to their effectiveness in capturing semantic properties of words; Machine Translation (MT), Information Retrieval (IR) and Information Extraction (IE) are among such areas. In this paper, we propose an open source ArbEngVec which provides several Arabic-English cross-lingual word embedding models. To train our bilingual models, we use a large dataset with more than 93 million pairs of Arabic-English parallel sentences. In addition, we perform both extrinsic and intrinsic evaluations for the different word embedding model variants. The extrinsic evaluation assesses the performance of models on the cross-language Semantic Textual Similarity (STS), while the intrinsic evaluation is based on the Word Translation (WT) task.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Word Embeddings (WE) are getting increasingly popular and widely applied in many Natural Language Processing (NLP) applications due to their effectiveness in capturing semantic properties of words; Machine Translation (MT), Information Retrieval (IR) and Information Extraction (IE) are among such areas. In this paper, we propose an open source ArbEngVec which provides several Arabic-English cross-lingual word embedding models. To train our bilingual models, we use a large dataset with more than 93 million pairs of Arabic-English parallel sentences. In addition, we perform both extrinsic and intrinsic evaluations for the different word embedding model variants. The extrinsic evaluation assesses the performance of models on the cross-language Semantic Textual Similarity (STS), while the intrinsic evaluation is based on the Word Translation (WT) task.
ArbEngVec:阿拉伯-英语跨语言词嵌入模型
词嵌入(WE)在自然语言处理(NLP)应用中越来越受欢迎和广泛应用,因为它可以有效地捕获词的语义属性;机器翻译(MT)、信息检索(IR)和信息提取(IE)就是其中的几个领域。在本文中,我们提出了一个开源的ArbEngVec,它提供了几个阿拉伯-英语跨语言的词嵌入模型。为了训练我们的双语模型,我们使用了一个拥有超过9300万对阿拉伯语-英语平行句的大型数据集。此外,我们对不同的词嵌入模型变体进行了外在和内在的评估。外在评价评估模型在跨语言语义文本相似度(STS)上的表现,而内在评价基于词翻译(WT)任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信