Off-line Recognition of Hand-Written Bengali Numerals Using Morphological Features

Pulak Purkait, B. Chanda
{"title":"Off-line Recognition of Hand-Written Bengali Numerals Using Morphological Features","authors":"Pulak Purkait, B. Chanda","doi":"10.1109/ICFHR.2010.63","DOIUrl":null,"url":null,"abstract":"This paper proposes a technique for automatic recognition of Bengali handwritten numerals using multiple feature sets. We discuss about some novel Morphological features and k-curvature feature extraction technique to recognize handwritten scripts. We use different multi-layer perceptron (MLP) classifiers to train this feature spaces and then fuse those classifiers using modified ‘Naive’-Bayes combination to increase accuracy of recognition result. The individual feature sets give reasonably high accuracy up-to 96.25%, while fused classifier gives accuracy of 97.75%.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper proposes a technique for automatic recognition of Bengali handwritten numerals using multiple feature sets. We discuss about some novel Morphological features and k-curvature feature extraction technique to recognize handwritten scripts. We use different multi-layer perceptron (MLP) classifiers to train this feature spaces and then fuse those classifiers using modified ‘Naive’-Bayes combination to increase accuracy of recognition result. The individual feature sets give reasonably high accuracy up-to 96.25%, while fused classifier gives accuracy of 97.75%.
基于形态特征的手写体孟加拉数字离线识别
提出了一种基于多特征集的孟加拉手写数字自动识别技术。我们讨论了一些新的形态学特征和k曲率特征提取技术来识别手写体。我们使用不同的多层感知器(MLP)分类器来训练这些特征空间,然后使用改进的“朴素”-贝叶斯组合来融合这些分类器以提高识别结果的准确性。单个特征集的准确率可达96.25%,而融合分类器的准确率为97.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信