A conceptual custom super-computer design for real-time simulation of human brain

Nasim Farahini, A. Hemani
{"title":"A conceptual custom super-computer design for real-time simulation of human brain","authors":"Nasim Farahini, A. Hemani","doi":"10.1109/IRANIANCEE.2013.6599755","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce BRIC, a novel custom multi-chip digital computer architecture for simulating in realtime a model of human brain in form of a spiking Bayesian Confidence Propagation Neural Network (BCPNN). The design is conceptually dimensioned for available technology in 2015-2020 with the estimated size of a pizza box, consuming less than 3 kWs of power, delivering 800 Teraflops/sec (single precision multiply operation) and 30 TBs of memory. To the best of our knowledge, this will be the smallest and lowest power real-time brain simulation engine if manufactured. The silicon and computational efficiencies come from use of 3D memory stacking, innovation in algorithm and architectural customization. The chip will be programmable allowing experimentation with variants of the BCPNN brain model.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce BRIC, a novel custom multi-chip digital computer architecture for simulating in realtime a model of human brain in form of a spiking Bayesian Confidence Propagation Neural Network (BCPNN). The design is conceptually dimensioned for available technology in 2015-2020 with the estimated size of a pizza box, consuming less than 3 kWs of power, delivering 800 Teraflops/sec (single precision multiply operation) and 30 TBs of memory. To the best of our knowledge, this will be the smallest and lowest power real-time brain simulation engine if manufactured. The silicon and computational efficiencies come from use of 3D memory stacking, innovation in algorithm and architectural customization. The chip will be programmable allowing experimentation with variants of the BCPNN brain model.
用于实时模拟人脑的概念定制超级计算机设计
在本文中,我们介绍了BRIC,一种新的定制多芯片数字计算机体系结构,用于以峰值贝叶斯置信传播神经网络(BCPNN)的形式实时模拟人脑模型。该设计的概念尺寸为2015-2020年可用技术,估计大小为披萨盒,功耗低于3千瓦,每秒800万亿次浮点运算(单精度乘法运算)和30 tb内存。据我们所知,这将是最小和最低功率的实时大脑模拟引擎,如果制造出来。硅和计算效率来自使用3D内存堆叠,算法创新和架构定制。该芯片将是可编程的,允许对BCPNN大脑模型的变体进行实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信