Low-Complexity Multidimensional MUSIC Algorithm Incorporating Across-Neighborhood Search Mechanism

Yameng Jiao, Wenping Li, Lin Cui
{"title":"Low-Complexity Multidimensional MUSIC Algorithm Incorporating Across-Neighborhood Search Mechanism","authors":"Yameng Jiao, Wenping Li, Lin Cui","doi":"10.1109/ICSPCC55723.2022.9984337","DOIUrl":null,"url":null,"abstract":"Since the multi-dimensional classical multiple signal classification (MD-MUSIC) algorithm requires a huge amount of computation for multi-dimensional grid search, an improved ant colony optimization (IACO) algorithm with across-neighborhood search (ANS) capability is therefore proposed in this paper. The scheme uses the elite reverse learning strategy to construct the initial solution population, and the optimization method of ant colony is dynamically adjusted by introducing global ANS and Gaussian kernel function local search. Finally, the nonlinear global optimal solution of the MD-MUSIC estimation method is obtained. The experimental results indicate that the new method effectively reduces the calculation without losing the estimation accuracy. Moreover, the algorithm has faster convergence performance and better stability.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"2233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the multi-dimensional classical multiple signal classification (MD-MUSIC) algorithm requires a huge amount of computation for multi-dimensional grid search, an improved ant colony optimization (IACO) algorithm with across-neighborhood search (ANS) capability is therefore proposed in this paper. The scheme uses the elite reverse learning strategy to construct the initial solution population, and the optimization method of ant colony is dynamically adjusted by introducing global ANS and Gaussian kernel function local search. Finally, the nonlinear global optimal solution of the MD-MUSIC estimation method is obtained. The experimental results indicate that the new method effectively reduces the calculation without losing the estimation accuracy. Moreover, the algorithm has faster convergence performance and better stability.
基于跨邻域搜索机制的低复杂度多维MUSIC算法
针对多维经典多信号分类(MD-MUSIC)算法在进行多维网格搜索时需要大量计算量的问题,本文提出了一种具有跨邻域搜索(ANS)能力的改进蚁群优化(IACO)算法。该方案采用精英逆向学习策略构造初始解种群,并通过引入全局ANS和高斯核函数局部搜索对蚁群优化方法进行动态调整。最后,给出了MD-MUSIC估计方法的非线性全局最优解。实验结果表明,该方法在不影响估计精度的前提下,有效地减少了计算量。该算法具有更快的收敛性能和更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信