Efficient and effective random testing using the Voronoi diagram

T. Chen, Robert G. Merkel
{"title":"Efficient and effective random testing using the Voronoi diagram","authors":"T. Chen, Robert G. Merkel","doi":"10.1109/ASWEC.2006.25","DOIUrl":null,"url":null,"abstract":"Adaptive random testing (ART) is a method for improving the fault-finding effectiveness of random testing. Fixed-size candidate set ART is the most studied variant of this approach. However, existing implementations of FSCS-ART have had substantial selection overhead, with n test cases requiring O(n/sup 2/) time to generate. We describe the use of a geometric data structure known as the Voronoi diagram to reduce this overhead to no worse than O(n/spl radic/n) and, with further optimization, O(nlogn). We demonstrate experimentally that practical improvements in selection overhead can be gained using this improved implementation.","PeriodicalId":285684,"journal":{"name":"Australian Software Engineering Conference (ASWEC'06)","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Software Engineering Conference (ASWEC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASWEC.2006.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Adaptive random testing (ART) is a method for improving the fault-finding effectiveness of random testing. Fixed-size candidate set ART is the most studied variant of this approach. However, existing implementations of FSCS-ART have had substantial selection overhead, with n test cases requiring O(n/sup 2/) time to generate. We describe the use of a geometric data structure known as the Voronoi diagram to reduce this overhead to no worse than O(n/spl radic/n) and, with further optimization, O(nlogn). We demonstrate experimentally that practical improvements in selection overhead can be gained using this improved implementation.
使用Voronoi图进行高效和有效的随机测试
自适应随机测试(ART)是一种提高随机测试故障发现效率的方法。固定大小的候选集ART是该方法研究最多的变体。然而,现有的FSCS-ART实现有大量的选择开销,n个测试用例需要O(n/sup 2/)时间来生成。我们描述了一种称为Voronoi图的几何数据结构的使用,以将此开销降低到不低于O(n/spl radial /n),并且经过进一步优化,可以降低到O(nlogn)。我们通过实验证明,使用这种改进的实现可以获得选择开销方面的实际改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信