Obstacle avoidance system development for the Ardrone 2.0 using the tum_ardrone package

F. d'Apolito, C. Sulzbachner
{"title":"Obstacle avoidance system development for the Ardrone 2.0 using the tum_ardrone package","authors":"F. d'Apolito, C. Sulzbachner","doi":"10.1109/RED-UAS.2017.8101642","DOIUrl":null,"url":null,"abstract":"For micro aerial vehicles (MAV) to operate in indoor environments, several challenges have been identified such as collision avoidance. This paper aims to present a small scale indoor demonstrator of an indoor collision avoidance system using the Parrot Ardrone 2.0 and the tum_ardrone ROS package. In addition, obstacle detection was developed in order to detect obstacles from the point cloud extracted from the Parallel Tracking and Mapping (PTAM) algorithm. Based on the coordinates of the obstacles, the autopilot computes a safe path for the MAV.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For micro aerial vehicles (MAV) to operate in indoor environments, several challenges have been identified such as collision avoidance. This paper aims to present a small scale indoor demonstrator of an indoor collision avoidance system using the Parrot Ardrone 2.0 and the tum_ardrone ROS package. In addition, obstacle detection was developed in order to detect obstacles from the point cloud extracted from the Parallel Tracking and Mapping (PTAM) algorithm. Based on the coordinates of the obstacles, the autopilot computes a safe path for the MAV.
使用tum_ardrone包为Ardrone 2.0开发避障系统
对于在室内环境中运行的微型飞行器(MAV),已经确定了一些挑战,例如避免碰撞。本文旨在利用Parrot Ardrone 2.0和tum_ardrone ROS包构建室内避碰系统的小型室内演示器。此外,为了从并行跟踪与映射(PTAM)算法提取的点云中检测障碍物,还开发了障碍物检测。根据障碍物的坐标,自动驾驶仪计算出MAV的安全路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信