Feasibility analysis of the robust adaptive Kalman filtering model

Zhang-yu Huang, Xi-qiang Chen
{"title":"Feasibility analysis of the robust adaptive Kalman filtering model","authors":"Zhang-yu Huang, Xi-qiang Chen","doi":"10.1117/12.913955","DOIUrl":null,"url":null,"abstract":"Classic Kalman Filter is a dynamic and efficient data processing method, but there are some limitations. Robust estimation theory will be introduced to the Classical Kalman Filter (CKF) method, that is: Robust Adaptive Kalman Filter (RAKF). There is a clear advantage in reducing the observational errors and the state prediction errors context. In this paper, it uses a dam deformation monitoring example to illustrate that the RAKF is more reliable than the CKF in the deformation monitoring data processing effectively, and it is obviously in inhibiting the aspect of the state prediction errors and the observational errors. It is a viable and effective method of estimation method.","PeriodicalId":194292,"journal":{"name":"International Symposium on Lidar and Radar Mapping Technologies","volume":"8286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Lidar and Radar Mapping Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.913955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classic Kalman Filter is a dynamic and efficient data processing method, but there are some limitations. Robust estimation theory will be introduced to the Classical Kalman Filter (CKF) method, that is: Robust Adaptive Kalman Filter (RAKF). There is a clear advantage in reducing the observational errors and the state prediction errors context. In this paper, it uses a dam deformation monitoring example to illustrate that the RAKF is more reliable than the CKF in the deformation monitoring data processing effectively, and it is obviously in inhibiting the aspect of the state prediction errors and the observational errors. It is a viable and effective method of estimation method.
鲁棒自适应卡尔曼滤波模型的可行性分析
经典卡尔曼滤波是一种动态、高效的数据处理方法,但存在一定的局限性。将鲁棒估计理论引入经典卡尔曼滤波(CKF)方法,即鲁棒自适应卡尔曼滤波(RAKF)。在减少观测误差和状态预测误差方面有明显的优势。本文通过一个大坝变形监测实例,说明RAKF在变形监测数据处理方面比CKF更可靠,在抑制状态预测误差和观测误差方面效果明显。这是一种可行而有效的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信