PRNU-based finger vein sensor identification: On the effect of different sensor croppings

Dominik Söllinger, Babak Maser, A. Uhl
{"title":"PRNU-based finger vein sensor identification: On the effect of different sensor croppings","authors":"Dominik Söllinger, Babak Maser, A. Uhl","doi":"10.1109/ICB45273.2019.8987237","DOIUrl":null,"url":null,"abstract":"In this work, we study the applicability of PRNU-based sensor identification methods for finger vein imagery. We also investigate the effect of different image regions on the identification performance by looking at five different crop-pings with different sizes. The proposed method is tested on eight publicly available finger vein datasets. For each finger vein sensor a noise reference pattern is generated and subsequently matched with noise residuals extracted from previously unseen finger vein images. Although the final result strongly encourages the use of PRNU-based approaches for sensor identification, it can also be observed that the choice of image region for PRNU extraction is crucial. The result clearly shows that regions containing biometric trait (varying content) should be preferred over background regions containing non-biometric trait (identical content).","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we study the applicability of PRNU-based sensor identification methods for finger vein imagery. We also investigate the effect of different image regions on the identification performance by looking at five different crop-pings with different sizes. The proposed method is tested on eight publicly available finger vein datasets. For each finger vein sensor a noise reference pattern is generated and subsequently matched with noise residuals extracted from previously unseen finger vein images. Although the final result strongly encourages the use of PRNU-based approaches for sensor identification, it can also be observed that the choice of image region for PRNU extraction is crucial. The result clearly shows that regions containing biometric trait (varying content) should be preferred over background regions containing non-biometric trait (identical content).
基于prnu的指静脉传感器识别:不同传感器裁剪效果的研究
在这项工作中,我们研究了基于prnu的传感器识别方法在手指静脉图像中的适用性。我们还研究了不同图像区域对识别性能的影响,通过观察五种不同大小的裁剪。该方法在8个公开的手指静脉数据集上进行了测试。对于每个手指静脉传感器,生成噪声参考模式,随后与从先前未见过的手指静脉图像中提取的噪声残差进行匹配。尽管最终结果强烈鼓励使用基于PRNU的方法进行传感器识别,但也可以观察到,PRNU提取的图像区域的选择至关重要。结果清楚地表明,包含生物特征(内容不同)的区域应优于包含非生物特征(内容相同)的背景区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信