Learning humanoid motion dynamics through sensory-motor mapping in reduced dimensional spaces

R. Chalodhorn, David B. Grimes, Gabriel Y. Maganis, Rajesh P. N. Rao, M. Asada
{"title":"Learning humanoid motion dynamics through sensory-motor mapping in reduced dimensional spaces","authors":"R. Chalodhorn, David B. Grimes, Gabriel Y. Maganis, Rajesh P. N. Rao, M. Asada","doi":"10.1109/ROBOT.2006.1642266","DOIUrl":null,"url":null,"abstract":"Optimization of robot dynamics for a given human motion is an intuitive way to approach the problem of learning complex human behavior by imitation. In this paper, we propose a methodology based on a learning approach that performs optimization of humanoid dynamics in a low-dimensional subspace. We compactly represent the kinematic information of humanoid motion in a low dimensional subspace. Motor commands in the low dimensional subspace are mapped to the expected sensory feedback. We select optimal motor commands based on sensory-motor mapping that also satisfy our kinematic constraints. Finally, we obtain a set of novel postures that result in superior motion dynamics compared to the initial motion. We demonstrate results of the optimized motion on both a dynamics simulator and a real humanoid robot","PeriodicalId":318305,"journal":{"name":"Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2006.1642266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Optimization of robot dynamics for a given human motion is an intuitive way to approach the problem of learning complex human behavior by imitation. In this paper, we propose a methodology based on a learning approach that performs optimization of humanoid dynamics in a low-dimensional subspace. We compactly represent the kinematic information of humanoid motion in a low dimensional subspace. Motor commands in the low dimensional subspace are mapped to the expected sensory feedback. We select optimal motor commands based on sensory-motor mapping that also satisfy our kinematic constraints. Finally, we obtain a set of novel postures that result in superior motion dynamics compared to the initial motion. We demonstrate results of the optimized motion on both a dynamics simulator and a real humanoid robot
通过在降维空间中的感觉-运动映射学习类人运动动力学
针对给定人体运动的机器人动力学优化是通过模仿学习复杂人类行为问题的一种直观方法。在本文中,我们提出了一种基于学习方法的方法,该方法在低维子空间中执行类人动力学优化。我们在低维子空间中紧凑地表示了类人运动的运动学信息。低维子空间中的运动指令被映射到预期的感觉反馈。我们选择最优的运动指令基于感觉-运动映射,同时满足我们的运动学约束。最后,我们获得了一组新颖的姿势,与初始运动相比,这些姿势具有更好的运动动力学。在动力学模拟器和真实的仿人机器人上验证了优化后的运动结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信