On the optimality of Bussgang and super exponential blind deconvolution methods

G. Scarano, G. Jacovitti
{"title":"On the optimality of Bussgang and super exponential blind deconvolution methods","authors":"G. Scarano, G. Jacovitti","doi":"10.1109/HOST.1997.613524","DOIUrl":null,"url":null,"abstract":"In this contribution, a generalization of the super exponential blind deconvolution method is discussed. The generalization consists in the definition of a \"spikyness\" criterion involving nonlinearities rather than only powers. This allows to rephrase Bussgang deconvolution in the framework of super exponential deconvolution using a spikyness criterion which takes into account the pdf of the input series to be recovered. Improved performance is expected when generalized super exponential deconvolution is tuned to suitable optimality criteria.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this contribution, a generalization of the super exponential blind deconvolution method is discussed. The generalization consists in the definition of a "spikyness" criterion involving nonlinearities rather than only powers. This allows to rephrase Bussgang deconvolution in the framework of super exponential deconvolution using a spikyness criterion which takes into account the pdf of the input series to be recovered. Improved performance is expected when generalized super exponential deconvolution is tuned to suitable optimality criteria.
Bussgang和超指数盲反卷积方法的最优性
本文讨论了超指数盲反褶积方法的推广。这种推广包括定义一个涉及非线性而不仅仅是幂的“尖峰”准则。这允许在超指数反褶积的框架中使用考虑到要恢复的输入序列的pdf的尖度准则来重新描述Bussgang反褶积。当将广义超指数反卷积调整到合适的最优性准则时,期望性能得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信