{"title":"A Random Number Generator Based on Electronic Noise and the Xorshift Algorithm","authors":"Mandana Ewert","doi":"10.1145/3301326.3301359","DOIUrl":null,"url":null,"abstract":"This paper introduces a random number generator (RNG) based on the avalanche noise of two diodes. A true random number generator (TRNG) generates true random numbers with the use of the electronic noise produced by two avalanche diodes. The amplified outputs of the diodes are sampled and digitized. The difference between the two concurrently sampled and digitized outputs is calculated and used to select a seed and to drive a pseudo-random number generator (PRNG). The PRNG is an xorshift generator that generates 1024 bits in each cycle. Every sequence of 1024 bits is moderately modified and output. The TRNG delivers the next seed and the next cycle begins. The statistical behavior of the generator is analyzed and presented.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper introduces a random number generator (RNG) based on the avalanche noise of two diodes. A true random number generator (TRNG) generates true random numbers with the use of the electronic noise produced by two avalanche diodes. The amplified outputs of the diodes are sampled and digitized. The difference between the two concurrently sampled and digitized outputs is calculated and used to select a seed and to drive a pseudo-random number generator (PRNG). The PRNG is an xorshift generator that generates 1024 bits in each cycle. Every sequence of 1024 bits is moderately modified and output. The TRNG delivers the next seed and the next cycle begins. The statistical behavior of the generator is analyzed and presented.