On Corank Two Edge-Bipartite Graphs and Simply Extended Euclidean Diagrams

Marcin Gąsiorek, D. Simson, Katarzyna Zając
{"title":"On Corank Two Edge-Bipartite Graphs and Simply Extended Euclidean Diagrams","authors":"Marcin Gąsiorek, D. Simson, Katarzyna Zając","doi":"10.1109/SYNASC.2014.17","DOIUrl":null,"url":null,"abstract":"We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with m+2 ≥ 3 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc<sub>Δ</sub> ⊆ C and presented in our talks given in SYNASC12 and SYNASC13. Here, we study non-negative edge-bipartite graphs of corank two, in the sense that the symmetric Gram matrix G<sub>Δ</sub> ∈ M<sub>m+2</sub>(Z) of Δ is positive semi-definite of rank m ≥ 1. Extending each of the simply laced Euclidean diagrams A<sub>m</sub>, m ≥ 1, D<sub>m</sub>, m ≥ 4, Ẽ<sub>6</sub>, Ẽ<sub>7</sub>, Ẽ<sub>8</sub> by one vertex, we construct a family of loop-free corank two diagrams Ã<sub>m</sub><sup>2</sup>, D̃<sub>m</sub><sup>2</sup>, Ẽ<sub>6</sub><sup>2</sup>, Ẽ<sub>7</sub><sup>2</sup>, Ẽ<sub>8</sub><sup>2</sup> (called simply extended Euclidean diagrams) such that they classify all connected corank two loop-free edge-bipartite graphs Δ, with m + 2 ≥ 3 vertices, up to Z-congruence Δ ~z Δ'. Here Δ ~z Δ' means that G<sub>Δ'</sub>, = B<sup>tr</sup> ·G<sub>Δ</sub> ·B, for some B ∈ M<sub>m+2</sub>(Z) such that det B = ±1. We present algorithms that generate all such edge-bipartite graphs of a given size m + 2 ≥ 3, together with their Coxeter polynomials, and the reduced Coxeter numbers, using symbolic and numeric computer calculations in Python. Moreover, we prove that for any corank two connected loop-free edge-bipartite graph Δ, with m + 2 ≥ 3 vertices, there exists a simply extended Euclidean diagram D such that Δ ~z D.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with m+2 ≥ 3 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum speccΔ ⊆ C and presented in our talks given in SYNASC12 and SYNASC13. Here, we study non-negative edge-bipartite graphs of corank two, in the sense that the symmetric Gram matrix GΔ ∈ Mm+2(Z) of Δ is positive semi-definite of rank m ≥ 1. Extending each of the simply laced Euclidean diagrams Am, m ≥ 1, Dm, m ≥ 4, Ẽ6, Ẽ7, Ẽ8 by one vertex, we construct a family of loop-free corank two diagrams Ãm2, D̃m2, Ẽ62, Ẽ72, Ẽ82 (called simply extended Euclidean diagrams) such that they classify all connected corank two loop-free edge-bipartite graphs Δ, with m + 2 ≥ 3 vertices, up to Z-congruence Δ ~z Δ'. Here Δ ~z Δ' means that GΔ', = Btr ·GΔ ·B, for some B ∈ Mm+2(Z) such that det B = ±1. We present algorithms that generate all such edge-bipartite graphs of a given size m + 2 ≥ 3, together with their Coxeter polynomials, and the reduced Coxeter numbers, using symbolic and numeric computer calculations in Python. Moreover, we prove that for any corank two connected loop-free edge-bipartite graph Δ, with m + 2 ≥ 3 vertices, there exists a simply extended Euclidean diagram D such that Δ ~z D.
关于Corank两边二部图和简单扩展欧几里得图
我们继续有限连通无环边二部图Δ的Coxeter谱研究,其中m+2≥3个顶点(一类有符号图),开始于[SIAM J.离散数学]。, 27(2013), 827-854],并在第12届和第13届大会上发表。本文研究了秩2的非负边二部图,即Δ的对称Gram矩阵GΔ∈Mm+2(Z)是秩m≥1的正半定。延长每一个简单的欧几里得图,m≥1,Dm, m≥4,Ẽ6Ẽ7,Ẽ8到一个顶点,我们构建一个家庭无路由循环的秩两图Am2 D̃m2,Ẽ62年,72年ẼẼ82(简称扩展欧几里德图),这样他们分类所有连接秩两个无路由循环edge-bipartite图形Δ顶点与m + 2≥3,Z-congruenceΔ~ zΔ”。这里Δ ~z Δ'表示GΔ', = Btr·GΔ·B,对于某些B∈Mm+2(z),使得det B =±1。我们提出了一种算法,使用Python中的符号和数字计算机计算,生成给定大小为m + 2≥3的所有这些边二部图,以及它们的Coxeter多项式和约简Coxeter数。此外,我们证明了对于任意有m + 2≥3个顶点的corank两连通无环边二部图Δ,存在一个简单扩展欧几里得图D,使得Δ ~z D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信