A Hybrid Approach for Named Entity and Sub-Type Tagging

R. Srihari
{"title":"A Hybrid Approach for Named Entity and Sub-Type Tagging","authors":"R. Srihari","doi":"10.3115/974147.974181","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid approach for named entity (NE) tagging which combines Maximum Entropy Model (MaxEnt), Hidden Markov Model (HMM) and handcrafted grammatical rules. Each has innate strengths and weaknesses; the combination results in a very high precision tagger. MaxEnt includes external gazetteers in the system. Sub-category generation is also discussed.","PeriodicalId":103133,"journal":{"name":"Applied Natural Language Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Natural Language Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/974147.974181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

This paper presents a hybrid approach for named entity (NE) tagging which combines Maximum Entropy Model (MaxEnt), Hidden Markov Model (HMM) and handcrafted grammatical rules. Each has innate strengths and weaknesses; the combination results in a very high precision tagger. MaxEnt includes external gazetteers in the system. Sub-category generation is also discussed.
命名实体和子类型标记的混合方法
本文提出了一种将最大熵模型(MaxEnt)、隐马尔可夫模型(HMM)和手工语法规则相结合的命名实体(NE)标注混合方法。每个人都有先天的优点和缺点;这种组合产生了非常高精度的标签机。MaxEnt在系统中包括外部地名词典。还讨论了子类别的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信