{"title":"Locker: Locally Constrained Self-Attentive Sequential Recommendation","authors":"Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, Julian McAuley","doi":"10.1145/3459637.3482136","DOIUrl":null,"url":null,"abstract":"Recently, self-attentive models have shown promise in sequential recommendation, given their potential to capture user long-term preferences and short-term dynamics simultaneously. Despite their success, we argue that self-attention modules, as a non-local operator, often fail to capture short-term user dynamics accurately due to a lack of inductive local bias. To examine our hypothesis, we conduct an analytical experiment on controlled 'short-term' scenarios. We observe a significant performance gap between self-attentive recommenders with and without local constraints, which implies that short-term user dynamics are not sufficiently learned by existing self-attentive recommenders. Motivated by this observation, we propose a simple framework, (Locker) for self-attentive recommenders in a plug-and-play fashion. By combining the proposed local encoders with existing global attention heads, Locker enhances short-term user dynamics modeling, while retaining the long-term semantics captured by standard self-attentive encoders. We investigate Locker with five different local methods, outperforming state-of-the-art self-attentive recom- menders on three datasets by 17.19% (NDCG@20) on average.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Recently, self-attentive models have shown promise in sequential recommendation, given their potential to capture user long-term preferences and short-term dynamics simultaneously. Despite their success, we argue that self-attention modules, as a non-local operator, often fail to capture short-term user dynamics accurately due to a lack of inductive local bias. To examine our hypothesis, we conduct an analytical experiment on controlled 'short-term' scenarios. We observe a significant performance gap between self-attentive recommenders with and without local constraints, which implies that short-term user dynamics are not sufficiently learned by existing self-attentive recommenders. Motivated by this observation, we propose a simple framework, (Locker) for self-attentive recommenders in a plug-and-play fashion. By combining the proposed local encoders with existing global attention heads, Locker enhances short-term user dynamics modeling, while retaining the long-term semantics captured by standard self-attentive encoders. We investigate Locker with five different local methods, outperforming state-of-the-art self-attentive recom- menders on three datasets by 17.19% (NDCG@20) on average.