Smart data driven maintenance: Improving damage detection and assessment on aerospace structures

F. Archetti, Gaia Arosio, Antonio Candelieri, I. Giordani, Raul Sormani
{"title":"Smart data driven maintenance: Improving damage detection and assessment on aerospace structures","authors":"F. Archetti, Gaia Arosio, Antonio Candelieri, I. Giordani, Raul Sormani","doi":"10.1109/METROAEROSPACE.2014.6865902","DOIUrl":null,"url":null,"abstract":"Data driven on-line assessment of structural health of aircraft fuselage panels is crucial both in military and civilian settings. This paper shows how Support Vector Machines (SVM) and Genetic Algorithm (GA) enable to analyze the strain values acquired through a monitoring sensor network and improve the diagnostic steps: 1) detecting a damage 2) identifying the specific component affected 3) characterizing the damage in terms of centre and size. The first two steps are performed through the SVM while the 3rd step is based on an Artificial Neural Network (ANN). Finally, the remaining useful life is estimated by using ANNs to predict the values of two parameters of the NASGRO equation which is used to estimate the damage propagation.","PeriodicalId":162403,"journal":{"name":"2014 IEEE Metrology for Aerospace (MetroAeroSpace)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Metrology for Aerospace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2014.6865902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Data driven on-line assessment of structural health of aircraft fuselage panels is crucial both in military and civilian settings. This paper shows how Support Vector Machines (SVM) and Genetic Algorithm (GA) enable to analyze the strain values acquired through a monitoring sensor network and improve the diagnostic steps: 1) detecting a damage 2) identifying the specific component affected 3) characterizing the damage in terms of centre and size. The first two steps are performed through the SVM while the 3rd step is based on an Artificial Neural Network (ANN). Finally, the remaining useful life is estimated by using ANNs to predict the values of two parameters of the NASGRO equation which is used to estimate the damage propagation.
智能数据驱动的维护:改进航空结构的损伤检测和评估
数据驱动的飞机机身面板结构健康在线评估在军用和民用环境中都至关重要。本文展示了支持向量机(SVM)和遗传算法(GA)如何分析通过监测传感器网络获得的应变值,并改进诊断步骤:1)检测损伤2)识别受影响的特定部件3)根据中心和大小表征损伤。前两步通过支持向量机进行,第三步基于人工神经网络(ANN)。最后,利用人工神经网络预测用于损伤传播估计的NASGRO方程的两个参数值,估计剩余使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信