MAFIA: a maximal frequent itemset algorithm for transactional databases

D. Burdick, Manuel Calimlim, J. Gehrke
{"title":"MAFIA: a maximal frequent itemset algorithm for transactional databases","authors":"D. Burdick, Manuel Calimlim, J. Gehrke","doi":"10.1109/ICDE.2001.914857","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation of the database with an efficient relative bitmap compression schema. In a thorough experimental analysis of our algorithm on real data, we isolate the effect of the individual components of the algorithm. Our performance numbers show that our algorithm outperforms previous work by a factor of three to five.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"841","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 841

Abstract

We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation of the database with an efficient relative bitmap compression schema. In a thorough experimental analysis of our algorithm on real data, we isolate the effect of the individual components of the algorithm. Our performance numbers show that our algorithm outperforms previous work by a factor of three to five.
MAFIA:一个用于事务性数据库的最大频繁项集算法
提出了一种从事务数据库中挖掘最大频繁项集的新算法。当数据库中的项集很长时,我们的算法特别有效。该算法的搜索策略将项集格的深度优先遍历与有效的剪枝机制相结合。我们的搜索策略的实现结合了数据库的垂直位图表示和有效的相对位图压缩模式。在对我们的算法在真实数据上的彻底实验分析中,我们隔离了算法的各个组成部分的影响。我们的性能数据表明,我们的算法比以前的工作性能高出三到五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信