Multi-Quartznet: Multi-Resolution Convolution for Speech Recognition with Multi-Layer Feature Fusion

Jian Luo, Jianzong Wang, Ning Cheng, Guilin Jiang, Jing Xiao
{"title":"Multi-Quartznet: Multi-Resolution Convolution for Speech Recognition with Multi-Layer Feature Fusion","authors":"Jian Luo, Jianzong Wang, Ning Cheng, Guilin Jiang, Jing Xiao","doi":"10.1109/SLT48900.2021.9383532","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an end-to-end speech recognition network based on Nvidia’s previous QuartzNet [1] model. We try to promote the model performance, and design three components: (1) Multi-Resolution Convolution Module, re-places the original 1D time-channel separable convolution with multi-stream convolutions. Each stream has a unique dilated stride on convolutional operations. (2) Channel-Wise Attention Module, calculates the attention weight of each convolutional stream by spatial channel-wise pooling. (3) Multi-Layer Feature Fusion Module, reweights each convolutional block by global multi-layer feature maps. Our experiments demonstrate that Multi-QuartzNet model achieves CER 6.77% on AISHELL-1 data set, which outperforms original QuartzNet and is close to state-of-art result.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose an end-to-end speech recognition network based on Nvidia’s previous QuartzNet [1] model. We try to promote the model performance, and design three components: (1) Multi-Resolution Convolution Module, re-places the original 1D time-channel separable convolution with multi-stream convolutions. Each stream has a unique dilated stride on convolutional operations. (2) Channel-Wise Attention Module, calculates the attention weight of each convolutional stream by spatial channel-wise pooling. (3) Multi-Layer Feature Fusion Module, reweights each convolutional block by global multi-layer feature maps. Our experiments demonstrate that Multi-QuartzNet model achieves CER 6.77% on AISHELL-1 data set, which outperforms original QuartzNet and is close to state-of-art result.
多石英网:多分辨率卷积语音识别与多层特征融合
在本文中,我们基于Nvidia之前的QuartzNet[1]模型提出了一个端到端的语音识别网络。我们尝试提高模型的性能,并设计了三个组成部分:(1)多分辨率卷积模块,用多流卷积代替原来的一维时间通道可分离卷积。每个流在卷积操作上都有一个独特的扩展步幅。(2) Channel-Wise Attention Module,通过空间Channel-Wise pooling计算每个卷积流的注意力权重。(3)多层特征融合模块,通过全局多层特征映射重新加权每个卷积块。实验表明,Multi-QuartzNet模型在ahell -1数据集上的识别率达到6.77%,优于原始的QuartzNet模型,接近最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信