Cosamp and SP for the cosparse analysis model

R. Giryes, Michael Elad
{"title":"Cosamp and SP for the cosparse analysis model","authors":"R. Giryes, Michael Elad","doi":"10.5281/ZENODO.42838","DOIUrl":null,"url":null,"abstract":"CoSaMP and Subspace-Pursuit (SP) are two recovery algorithms that find the sparsest representation for a given signal under a given dictionary in the presence of noise. These two methods were conceived in the context of the synthesis sparse representation modeling. The cosparse analysis model is a recent construction that stands as an interesting alternative to the synthesis approach. This new model characterizes signals by the space they are orthogonal to. Despite the similarity between the two, the cosparse analysis model is markedly different from the synthesis one. In this paper we propose analysis versions of the CoSaMP and the SP algorithms, and demonstrate their performance for the compressed sensing problem.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

CoSaMP and Subspace-Pursuit (SP) are two recovery algorithms that find the sparsest representation for a given signal under a given dictionary in the presence of noise. These two methods were conceived in the context of the synthesis sparse representation modeling. The cosparse analysis model is a recent construction that stands as an interesting alternative to the synthesis approach. This new model characterizes signals by the space they are orthogonal to. Despite the similarity between the two, the cosparse analysis model is markedly different from the synthesis one. In this paper we propose analysis versions of the CoSaMP and the SP algorithms, and demonstrate their performance for the compressed sensing problem.
Cosamp和SP用于协稀疏分析模型
CoSaMP和子空间追踪(SP)是两种恢复算法,它们在存在噪声的给定字典下找到给定信号的最稀疏表示。这两种方法都是在综合稀疏表示建模的背景下提出的。co稀疏分析模型是最近的一种构造,是综合方法的一种有趣的替代方法。这个新模型通过信号与之正交的空间来表征信号。尽管两者有相似之处,但co稀疏分析模型与综合分析模型有明显的不同。本文提出了CoSaMP和SP算法的分析版本,并展示了它们在压缩感知问题上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信