Local Fusion with Fuzzy Integrals

A. Abdallah, H. Frigui, P. Gader
{"title":"Local Fusion with Fuzzy Integrals","authors":"A. Abdallah, H. Frigui, P. Gader","doi":"10.1109/FUZZY.2010.5584061","DOIUrl":null,"url":null,"abstract":"We propose a novel method for fusing different classifiers outputs. Our approach, called Context Extraction for Local Fusion with Fuzzy Integrals (CELF-FI), is a local approach that adapts fuzzy integrals fusion method to different regions of the feature space. It is based on a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. This objective function is defined and optimized to produce contexts as compact clusters via unsupervised clustering. Optimization of the objective function also provide an optimal Sugeno measure within each context. Our initial experiments have indicated that the proposed fusion approach outperforms all individual classifiers, the global fuzzy integral fusion method, and the basic local fusion with linear aggregation.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel method for fusing different classifiers outputs. Our approach, called Context Extraction for Local Fusion with Fuzzy Integrals (CELF-FI), is a local approach that adapts fuzzy integrals fusion method to different regions of the feature space. It is based on a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. This objective function is defined and optimized to produce contexts as compact clusters via unsupervised clustering. Optimization of the objective function also provide an optimal Sugeno measure within each context. Our initial experiments have indicated that the proposed fusion approach outperforms all individual classifiers, the global fuzzy integral fusion method, and the basic local fusion with linear aggregation.
模糊积分的局部融合
我们提出了一种融合不同分类器输出的新方法。我们的方法称为上下文提取与模糊积分局部融合(CELF-FI),是一种局部方法,使模糊积分融合方法适应于特征空间的不同区域。它基于一种新的目标函数,将上下文识别和多算法融合准则结合成一个联合目标函数。该目标函数被定义并优化,通过无监督聚类产生紧凑的上下文聚类。对目标函数的优化还提供了每个上下文中的最优Sugeno度量。我们的初步实验表明,该融合方法优于所有个体分类器、全局模糊积分融合方法和线性聚合的基本局部融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信