Differential evolution with nonlinear simplex method and dynamic neighborhood search

Dang Cong Tran, Zhijian Wu, Hui Wang, V. H. Tran
{"title":"Differential evolution with nonlinear simplex method and dynamic neighborhood search","authors":"Dang Cong Tran, Zhijian Wu, Hui Wang, V. H. Tran","doi":"10.1109/SOCPAR.2013.7054154","DOIUrl":null,"url":null,"abstract":"In this paper, by combination of some approaches we propose a new approach of Differential Evolution (DE) algorithm, called DE with nonlinear simplex method and dynamic neighborhood search (DENNS). In our approach the nonlinear simplex method (NSM) is used for population initialization and local neighborhood search. Moreover, local and global neighborhood search operators are employed to generate high quality candidate solutions. During the search process, the population is periodically ranked to change the topology of neighbors. Experimental studies are conducted on a comprehensive set of benchmark functions. Simulation results show that DENNS achieves better results on the majority of test functions, when comparing with some other similar evolutionary algorithms.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by combination of some approaches we propose a new approach of Differential Evolution (DE) algorithm, called DE with nonlinear simplex method and dynamic neighborhood search (DENNS). In our approach the nonlinear simplex method (NSM) is used for population initialization and local neighborhood search. Moreover, local and global neighborhood search operators are employed to generate high quality candidate solutions. During the search process, the population is periodically ranked to change the topology of neighbors. Experimental studies are conducted on a comprehensive set of benchmark functions. Simulation results show that DENNS achieves better results on the majority of test functions, when comparing with some other similar evolutionary algorithms.
基于非线性单纯形法和动态邻域搜索的差分进化
本文结合几种方法,提出了一种新的差分进化算法,即非线性单纯形法和动态邻域搜索的差分进化算法。在我们的方法中,非线性单纯形法(NSM)用于种群初始化和局部邻域搜索。此外,采用局部和全局邻域搜索算子生成高质量的候选解。在搜索过程中,对种群进行周期性排序,以改变邻居的拓扑结构。对一组综合的基准函数进行了实验研究。仿真结果表明,与其他类似的进化算法相比,DENNS在大多数测试函数上都取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信