Raiyan Abdul Baten, Yozen Liu, Heinrich Peters, Francesco Barbieri, Neil Shah, Leonardo Neves, M. Bos
{"title":"Predicting Future Location Categories of Users in a Large Social Platform","authors":"Raiyan Abdul Baten, Yozen Liu, Heinrich Peters, Francesco Barbieri, Neil Shah, Leonardo Neves, M. Bos","doi":"10.1609/icwsm.v17i1.22125","DOIUrl":null,"url":null,"abstract":"Understanding the users' patterns of visiting various location categories can help online platforms improve content personalization and user experiences. Current literature on predicting future location categories of a user typically employs features that can be traced back to the user, such as spatial geo-coordinates and demographic identities. Moreover, existing approaches commonly suffer from cold-start and generalization problems, and often cannot specify when the user will visit the predicted location category. In a large social platform, it is desirable for prediction models to avoid using user-identifiable data, generalize to unseen and new users, and be able to make predictions for specific times in the future. In this work, we construct a neural model, LocHabits, using data from Snapchat. The model omits user-identifiable inputs, leverages temporal and sequential regularities in the location category histories of Snapchat users and their friends, and predicts the users' next-hour location categories. We evaluate our model on several real-life, large-scale datasets from Snapchat and FourSquare, and find that the model can outperform baselines by 14.94% accuracy. We confirm that the model can (1) generalize to unseen users from different areas and times, and (2) fall back on collective trends in the cold-start scenario. We also study the relative contributions of various factors in making the predictions and find that the users' visitation preferences and most-recent visitation sequences play more important roles than time contexts, same-hour sequences, and social influence features.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Understanding the users' patterns of visiting various location categories can help online platforms improve content personalization and user experiences. Current literature on predicting future location categories of a user typically employs features that can be traced back to the user, such as spatial geo-coordinates and demographic identities. Moreover, existing approaches commonly suffer from cold-start and generalization problems, and often cannot specify when the user will visit the predicted location category. In a large social platform, it is desirable for prediction models to avoid using user-identifiable data, generalize to unseen and new users, and be able to make predictions for specific times in the future. In this work, we construct a neural model, LocHabits, using data from Snapchat. The model omits user-identifiable inputs, leverages temporal and sequential regularities in the location category histories of Snapchat users and their friends, and predicts the users' next-hour location categories. We evaluate our model on several real-life, large-scale datasets from Snapchat and FourSquare, and find that the model can outperform baselines by 14.94% accuracy. We confirm that the model can (1) generalize to unseen users from different areas and times, and (2) fall back on collective trends in the cold-start scenario. We also study the relative contributions of various factors in making the predictions and find that the users' visitation preferences and most-recent visitation sequences play more important roles than time contexts, same-hour sequences, and social influence features.