Construction of symmetric orthonormal multiwavelets

Hong-Yan Li, P. Zhao
{"title":"Construction of symmetric orthonormal multiwavelets","authors":"Hong-Yan Li, P. Zhao","doi":"10.1109/ICWAPR.2010.5576365","DOIUrl":null,"url":null,"abstract":"For multiwavelets can possess the character of compact support, orthogonality, symmetry and antisymmetry at the same time compared with scalar wavelet except Haar wavelet, we present a new method of constructing the length-(2N+l) symmetric orthonormal multiwavelet system with multiplicity 2 from any length-2N symmetric orthonormal multiwavelet system with multiplicity 2 and vice versa. Then, we give the example of constructing multiwavelet system using our method. At last, we apply this multiwavelet system to image denoising and obtain the better result than GHM multiwavelet and CL multiwavelet.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For multiwavelets can possess the character of compact support, orthogonality, symmetry and antisymmetry at the same time compared with scalar wavelet except Haar wavelet, we present a new method of constructing the length-(2N+l) symmetric orthonormal multiwavelet system with multiplicity 2 from any length-2N symmetric orthonormal multiwavelet system with multiplicity 2 and vice versa. Then, we give the example of constructing multiwavelet system using our method. At last, we apply this multiwavelet system to image denoising and obtain the better result than GHM multiwavelet and CL multiwavelet.
对称正交多小波的构造
针对除Haar小波外,多小波与标量小波相比可同时具有紧支撑、正交、对称和反对称的特点,本文提出了一种由任意长度-2N + 1的重数2对称标准正交多小波系统构造长度-(2N+ 1)的重数2对称标准正交多小波系统的新方法。最后给出了用该方法构造多小波系统的实例。最后将该多小波系统应用于图像去噪,得到了比GHM多小波和CL多小波更好的降噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信